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Abstract

A major issue for the trustworthiness of modern Al-models is their lack of robust-
ness. A notorious example is that putting a small sticker on a stop sign can cause
Al-models to classify it as a speed limit sign. This is not just an engineering chal-
lenge, but also a philosophical one: we need to better understand the concepts of
robustness and trustworthiness. Here, we contribute to this using methods from
(formal) epistemology and prove a no-go result: No matter how these concepts are
understood exactly, they cannot have four prima facie desirable properties without
trivializing. To do so, we describe a modal logic to reason about the robustness of
an Al-model, and then we prove that the four properties imply triviality via a novel
interpretation of Fitch’s lemma. We then discuss the consequences for explicat-
ing a viable notion of robustness for Al. A broader theme of the paper is to build
bridges between Al and epistemology: Not only does epistemology provide novel
methods for Al, but modern Al also provides many new questions and perspectives
for epistemology.

Keywords Artificial intelligence - Robustness - Trustworthiness - Epistemology -
Fitch’s paradox - Modal logic

1 Introduction

Despite the tremendous success of artificial intelligence (Al), a major issue for its
trustworthiness is the lack of robustness. Paradigmatic examples are so-called adver-
sarial attacks: a minuscule change to the input of the Al-model—like some noise or
a sticker—can yield a completely different output (Goodfellow et al., 2014; Eykholt
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et al., 2018). For a principled response to the robustness problem, we not only need
engineering solutions but also a better conceptual understanding of robustness and
trustworthiness.

In this paper, we contribute to this conceptual understanding using methods from
epistemology and logic. After all, these methods excel at understanding intuitive con-
cepts precisely: famously, this has been done for belief and knowledge, and here we
transfer these methods to robustness and trustworthiness. An important upshot of
this kind of analysis is to identify the limits of these concepts: how much of what we
would want from them is actually achievable. Knowing such upper bounds of robust-
ness and trustworthiness is crucial in guiding both our expectations and engineering.

How are robustness and trustworthiness understood in AI? Let us start with robust-
ness. If not left intuitive, it usually refers to various forms of immunity to so-called
distribution shifts. They occur when an Al-model is deployed—as common in prac-
tice—on input data sampled from a different distribution than the data on which it
was trained: e.g., when the model was trained on patient data from a few hospitals
but is deployed at many hospitals (Koh et al., 2021). Recently, a unified conceptual
analysis of robustness—that includes distribution shifts—was provided by Freiesle-
ben and Grote (2023, p. 1) as “the relative stability of a robustness target [e.g., the
deployment performance of the Al-model] with respect to specific interventions [e.g.,
shifting] on a modifier [e.g., the deployment distribution]” (cf. Braick & Khombh,
2025). Examples include the following.

1. The already mentioned adversarial attacks can be seen as synthetic distribution
shifts: the Al-model is deployed on artificially shifted inputs (Taori et al., 2020).!

2. But the Al-model should also be robust to natural distribution shifts: those aris-
ing in the real world, e.g., when the images come from different surroundings and
lighting conditions than those seen during training (Taori et al., 2020).

3. Performativity is also a form of distribution shift: The prediction of an Al-
model—say, whether a person gets a loan—supports decisions of the bank which
leads some applicants to manipulate their features towards more favorable out-
comes. This changes the distribution to which the Al-model is applied. Ideally,
the Al-model is robust to its induced distribution shifts (Perdomo et al., 2020).

4. Shortcut learning occurs, e.g., if an Al-model seemingly classifies cows perfectly
after training, but does so for the wrong reasons and hence fails on pictures of
cows outside their usual environment. The Al-model has learned the unintended
shortcut that ‘grass’ predicts ‘cow’, which fails outside the training distribution
(Geirhos et al., 2020).

The concept of trustworthiness is even more tricky. An expert group set up by the
European Commission requires trustworthy Al to be lawful, ethical, and robust
(High-Level Expert Group on Artificial Intelligence, 2019). (For an overview of
trustworthiness in Al, see Huang et al., 2020.) Here, we actually do not need more

For an overview on adversarial attacks, see Serban et al. (2020) and for a formalization Dreossi et al.
(2019).
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detail on the notion of trustworthiness beyond the fact that it plausibly implies robust-
ness. The reason is the following.

We are interested in the limitations of any reasonable precise notion of robustness
and trustworthiness. So we will not presuppose a specific definition of these concepts.
Instead, we will talk about them in a general language—that leaves open their exact
nature—and are interested in what we can derive about robustness and trustworthi-
ness just from some general principles (cf. axiomatic method). This is similar to
how we can meaningfully talk about the concept of belief and knowledge without
having to define precisely what they are. Using the methods of epistemology, we
can—despite this generality—still derive our no-go result.

More precisely, the summary of the paper is as follows. In Sect. 2, we illustrate
the issue of robustness and trustworthiness with a standard guiding example, namely
classifying images of handwritten digits—which, as we show, easily generalizes to
other Al-models, including large language models. From that, we develop, in Sect. 3,
a simple formal logic to reason about the robustness and trustworthiness of Al-mod-
els. In Sect. 4, we identify four prima facie desirable principles about robustness and
trustworthiness. To already mention these principles, they informally read as follows.

o Factivity: If the Al-model shows behavior ( robustly, it, in particular, shows be-
havior .

® Robustness: Every trustworthy behavior is robust.

o Countermodels: For every trustworthy behavior that is not shown on every input
(i.e., is not trivial), there is some input on which the Al-model robustly does not
show this behavior (so that input is a good counterexample, hence the name).

® Moore-closure: For every trustworthy behavior o, it is also trustworthy that the
Al-model cannot be easily tricked into showing behavior ¢ if it currently does not
(this has to do with the Moore sentence in epistemology, hence the name).

In Sect. 5, we prove that these principles imply triviality, via a novel interpretation
of Fitch’s lemma. In Sect. 6, we discuss the consequences of the no-go result for the
goal of explicating a viable notion of robustness. We distinguish between (1) a uni-
form notion of robustness (i.e., there is a fixed range of robustness that is guaranteed
whenever the Al-model is applied) and (2) a non-uniform notion (i.e., every appli-
cation of the Al-model has some range of robustness), as well as (3) a probabilistic
notion of robustness. The first satisfies all principles and hence trivializes, while the
last two do not trivialize but hence need to give up some principle (indeed, the Coun-
termodels principle). We argue that the first is too strong and the second too weak
a notion of robustness—with the third being a promising start to an intermediary
notion. Section 7 explores the generality of the no-go result: we sketch how it also
applies to the notion of explainability in Al as well as stability in philosophy. Section
8 highlights further open questions suggested by the analogies between Al and epis-
temology, which are summarized in Fig. 1. In particular, it asks how the impossibility
result—Ilike many others—may plant seeds for positive results, e.g., by moving from
a qualitative to a quantitative notion of robustness. We conclude in Sect. 9.

The broader theme of the paper—following recent ‘calls to action’ (Buckner,
2019; 2023; Grote et al., 2024)—is to further reconnect philosophy and modern Al
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Fig. 1 Analogies between Al Al Epistemology
and epistemology that will be Robustness Safefty condition for knowledge
developed in the paper Adversarial attacks Gettier cases
Training Internal justification
? External justification
Triviality Modal collapse
Al-model can be tricked Moore-sentence
Triviality of uniform robustness | Anti-luminosity
Non-uniform robustness Margin-for-error principle
No-go result Fitch’s lemma
Explainability Provability

Using the example of robustness and trustworthiness, we show how this connection
is fruitful in both directions: how well-studied epistemological and logical concepts
can be applied to pressing issues in Al, and how this also sheds new light on these
concepts via these novel applications.

2 A case study

As a simple but standard example, we consider an Al-model that classifies input
images according to which digit they depict. At the end of this section, we show that
our discussion actually applies much more generally also to large language models
(like ChatGPT) and models for automated decision-making.

2.1 Classification behavior of the model

We want to talk about the classification behavior of this AI-model, in order to assess
its robustness. So we want to make statements of the form ‘on input s, the Al-model
shows behavior ¢’. For example, given this picture s as input, the Al-model classifies
it as depicting digit 2. Thus, we are broadly in the setting of formal verification for Al
(Seshia et al., 2022; Huang et al., 2017; Albarghouthi, 2021): we want to see if the Al-
model (the system) in a state s (the environment) has property ¢ (the specification).

In suggestive logical notation, we write M, s F ¢ for ‘on input s, the Al-model M
shows behavior ¢’. We now want to describe the relation M, s F ¢ more precisely.
Before we start, though, note that the statement ‘M, s F ¢’ is one that we, as external
observers, make about the behavior of the AI-model; it is not an internal statement
of how the Al-model processes the input. In other words, M, s F ¢ concerns the
externally observable behavior of the Al-model and does not say that the Al-model
internally ‘believes’ that ¢ (after all, such anthropomorphizing language is very dif-
ficult to make precise).

To describe M, s F ¢, we recursively consider the structure of ¢, starting with
the basic—or atomic—behavior of the Al-model, i.e., its classification behavior. We
use the atomic sentences py, . . . , pg corresponding to the digits 0,...,9, so we can
describe the atomic behavior as:

@ Springer



Synthese (2026) 207:22 Page 5 of 37 22

e M, sk p; iff the Al-model M classifies input image s as depicting digit 7.2

We can then naturally extend this to complex behavior ¢: like —ps A p3. So
M, s E —ps A p3 says that the Al-model does not classify input s to depict digit 2,
but it does classify it to depict digit 3. Thus, we define

o M,skE—piff M,st @2
o M sEpANYift M,sEpand M,sF 1.

Again note the externality: M, s F - means that the Al-model does not show behav-
ior . It does not mean that the Al-model classifies the input as non-¢ (whatever that
means).

Importantly, we also want to talk about the robustness of the Al-model. For now,
let us take robustness as resilience to adversarial attacks (item 1 in our list). We write
M, s F Op; to say that the Al-model M robustly classifies input s as depicting digit
i, 1.e., it cannot be adversarially attacked on this classification. This means that on
all similar enough inputs s’, the Al-model still classifies input s” as depicting digit s.
Thus, we define

e M, sk Oy iff for all &’ that are relevantly similar to s, we have M, s’ = .

Of course, ‘relevantly similar’ is not a precise notion and may depend on the context
(the deployment situation, the safety-criticality, the type of adversarial attack, the
model, etc.). However, a straightforward way—which is used in the verification lit-
erature—is to specify ‘relevantly similar’ as having a distance with respect to some
fixed metric d on the inputs of less than some fixed threshold ¢ > 0. For concreteness,
the input space X is a subset of R™ where n is the number of pixels of the images, so
a vector s € R™ describes the color value (or grayscale) of each pixel in the image,
and X consists of those vectors that represent realistic images (rather than random
pixel values). A standard metric then is given by the L,-norm, and we can set, say,
€ := 0.1. Thus, ‘relevantly similar’ is a binary relation on inputs, and we get a Kripke
semantics for 0. (We will discuss issues and alternatives of this approach in Sect. 6.)
Finally, it will also be convenient to say that a property holds for all inputs:

o M skEoyiff forall ', we have M, s" E .

Importantly, the relation M, s F ¢ connects the model-internals (the micro-level)
with the model-externals (the macro-level). The left side of ‘=’ describes the Al-
model at the micro-level: it refers to the internal parameters of the model that are not
visible to the end-user (e.g., the model architecture and the weight values, which, so
far, we left implicit, but later also make the explicit) as well as the pixel-values of
the input image. The right side of ‘-’ describes the Al-model at the macro-level: the
behavior of the Al-model that can externally be observed by the end user, described

2 Throughout, ‘iff” abbreviates ‘if and only if”.
3Here ‘M, s H ¢’ is shorthand for ‘it is not the case that M, s E ¢’
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in a human-understandable language (e.g., the classification of the input in categories
that are meaningful to us). Obviously, we hence want to better understand this rela-
tion: its logic, i.e., the laws governing this link between the model-internals and the
model-externals, and how this connects to robustness and trustworthiness.

2.2 Robustness and trustworthiness of the Al-model

Now we have a simple language to talk about the behavior of the Al-model. With
it, we have a way to express local robustness: M, s E Oy says that, for input s, the
Al-model M robustly shows behavior ¢. But for deploying the Al-model in prac-
tice, we want a more global robustness: that the model still is locally robust also
on new inputs that it has not seen during training.* For example, to trust our Al-
model in its classifications of the digit 2, we want that whenever it classifies a real-
istic pixel image s € X as a digit 2 (i.e., M, s F ps), then it does so robustly (i.e.,
M, s E Op2). (So we do not require robustness on any arbitrary pixel image s € R™,
which may be too strong, but only on the realistic ones that we consider as allowed
input, i.e., the s € X C R™.) This means that for every allowed input s € X, we have
M, s E po — Opo. In logical terminology, a sentence 1 that is true at every state of a
given model is said to be valid in that model—denoted M & 1.5 Generally speaking,
then, we say a behavior ¢ is (globally) robust for the Al-model M if M E ¢ — Oep.

Moving to trustworthiness, when is a behavior ¢ of the Al-model trustworthy? For
example, for ¢ = po, we want that if the Al-model classifies an input s as depicting
the digit 2, we can trust that the input really depicts a 2. As mentioned, however, it
is very difficult both to theoretically characterize and practically identify the set T’
of trustworthy behavior. In general, for ¢ to be trustworthy this means that, if the
Al-model shows behavior , we can trust that behavior, but what that amounts to
exactly is difficult to specify. In the case of p,, this means trusting that the input
really depicts a 2, but for more complex ¢, this may be harder to say. Hence, as
often done in mathematics, we will treat T" as a variable (for a set of sentences) and
only make some plausible assumptions about it: for example, that trustworthiness
implies robustness (i.e., if ¢ € T, then ¢ is robust). We will formulate three further
such plausible assumptions (Sect. 4), and then our no-go result shows that they entail
triviality. Thus, we still gain knowledge about the trustworthy behaviors 7, without
explicitly defining it.

2.3 Aspecial case of the impossibility result

To already get a flavor for such an impossibility, we present a simple but far-reaching
special case of our no-go result.

4See, e.g., Ruan et al. (2019) for a discussion of local vs. global robustness.

STt is valid (simpliciter)—written F 1)—if it is valid in every model of the considered class of models. But
here the model-relative notion is enough.
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It adds one more assumption, namely that the input space X C R™ of the Al-
model—i.e., the set of realistic images—is path-connected.® Intuitively, this means
that, for any two realistic images s and s’, one can continuously change the pixel val-
ues of s so as to arrive at the pixel values of s’ while only producing realistic images
in the process. This has some intuitive plausibility, but we will not further elaborate
on it, since our main no-go result will do away with this assumption.

Theorem 1 Assume the input space X of the AI-model M is a path-connected subset
of R™. Let d be a metric on X, let € > 0, and assume that ‘relevantly similar’in the
interpretation of O is explicated as d(s,s') < e. If trustworthiness implies robust-
ness, then only trivial behavior is trustworthy: i.e., if ¢ € T, then either o is valid in
M or — is valid in M.

Consequently, if we buy the plausible assumptions for our running example, then
no interesting behavior—i.e., behavior that is present on some inputs but absent in
others—can be trustworthy! In particular, if we only consider robustness—i.e., stipu-
late T := {p : M E ¢ — Op}—and define (local) robustness, as usual, via a metric
and a threshold, then (global) robustness trivializes.

The response to the impossibility could be that (a) despite the initial plausibility of
the assumptions, we have to give up some and (b) we also need to refine the explica-
tion of robustness (not simply use a metric and a threshold). We will discuss this in
Sect. 6, after discussing the main no-go result. In particular, as an alternative to the
above ‘uniform’ robustness that uses a fixed robustness range ¢, we develop (1) a
‘non-uniform’ robustness where e can depend on the input and (2) a probabilistic ver-
sion that ‘smoothens’ the sharp cut-off provided by the robustness range.

As mentioned, Theorem 1 will be a consequence of our main result, but, in Appen-
dix A.1, we still give a direct proof. It is based on the following instructive idea. If
the trustworthy behavior ¢ were not trivial, there is an input s where the model shows
behavior ¢ and an input s’ where it does not. By connectedness, there is a sequence
of inputs s = s1,89,...,8,_1,5, = & such that adjacent inputs are at most e-far
apart. Since the model shows behavior ¢ on s; and trustworthy behavior is robust,
the model shows behavior ¢ robustly on s;. Hence it also shows this behavior on the
relevantly similar input s,. But now we can repeat the reasoning and eventually con-
clude that also on s, the model shows behavior ¢, contrary to assumption.

This proof is reminiscent of the anti-luminosity argument by Williamson (2000,
ch. 4) in epistemology. It argues that many mental states, like feeling cold, are not
luminous to us, i.e., we may be in that state without being in a position to know that
we are. This argument considers the mental states s1, ..., s, that we go through, in
millisecond intervals, from feeling cold at dawn to feeling hot at noon. If feeling cold
is luminous, then, in s,, we can know that we feel cold, so, for this knowledge to be

6 A subset X of R™ is path-connected if, for any , y € X, there is a path in X from x to y (i.e., a continuous
function p : [0, 1] — X with p(0) = z and p(1) = y).
"In fact, the theorem holds for any way of explicating relative similarity as a binary relation R (beyond

the relation d (S7 S') < €) to interpret [, as long as R is connected (i.e., for all S and s’ there are
8= 80,81,---,8, = 8 with 8; R8;11).
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reliably based, we should also feel cold in the very similar state s,. Again, we con-
tinue this reasoning to get that also in s,we feel cold, contrary to assumption.

2.4 Generalizing to other Al-models

Finally, let us see how the framework developed so far also captures other forms of
Al-models and robustness—not just adversarial attacks to a classifier.

Concerning other model architectures, let us consider two examples. First, if we
are dealing with tabular data and automated decision-making, our inputs no longer
are pixel images but feature vectors, and our Al-model outputs predictions based on
the inputted features. Again, these outputs are described by atomic sentences: for
example, M, s E pioan iff the AlI-model M outputs that the person whose features are
s should get a loan. Second, consider a large language model (LLM) predicting next
words. Then s is the prompt and the outputs again are described by atomic sentences:
for example, M, s F Dshining 1ff the language model M continues input s =‘The sun
is’ with the next word ‘shining’. As before, we can describe more complex behavior
using the connectives —, A, O, —. Though, in describing robustness, ‘relevantly simi-
lar’ now means, e.g., being synonymous (for inputs to the LLM) or being identical
outside of protected attributes like gender or disability status (for automated-decision
making). (We come back to LLMs in the probabilistic explication of robustness in
Sect. 6.3.)

Concerning other notions of robustness, we could, for example, capture natural
distribution shifts (item 2 in our list) by interpreting ‘relevantly similar’ as: input s’ is
a shifted version of input s (e.g., a picture of the same scene but with different light-
ing conditions). However, we get many more modeling options by noting that the
states s need not be just inputs. They can include all kinds of choices in the machine
learning pipeline—which is used by Freiesleben & Grote (2023) to define a general
account of robustness. So, for example, a state s could, in addition to the input, con-
sist of (1) a description of the task conceptualization, (2) the dataset in raw and in
prepared form, (3) the choice of model architecture, hyperparameters, and training
algorithm, and (4) the data distribution on which the model is deployed. Thus, we
could capture performativity 3, for example, by saying s is relevantly similar to s’
iff the deployment distribution of s’ is the one obtained from that of s after using the
Al-model for a certain amount of time. As an intermediate example, one can consider
states as pairs s = (w, z) consisting of a set of weights w of the Al-model and a
given input z. Then robustness could require that the model not only shows the same
behavior on similar inputs but also on similar weights. Thus, we would require that
we get the same behavior had we trained the model sampling the training data in a
different order.

In sum, we obtain a very general framework to describe robustness and trustwor-
thiness of Al-models. We now turn to analyzing this framework more formally.
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3 Asimple logic of robustness

Generalizing from the preceding examples, we have a language built from atomic
sentences using the operators —, A, 0, 0 . Intuitively, the sentences ¢ describe exter-
nally observable behavior in a human-understandable language. The sentences are
true or false at the internal states s of the Al-model M/—where a state at least includes
the input to the Al-model but can also include, ¢.g., the weights of the Al-model. We
write M, s F  iff, in state s, the model M shows behavior . So the relation F links
the internal states to the external behavior. We write M F ¢ (and say ¢ is valid in M)
if behavior ¢ is shown in every state, i.e., ¢ is a behavioral law of M. However, there
is no agreed-upon formal explication of F. In particular, we do not yet have a formal
semantics for the robustness operator .

Thus, we are in a similar situation that modal logicians were in before the advent
of Kripke semantics (and other semantics, like the topological semantics). They did
not have a formal semantics for the necessity operator O, which describes when a
sentence ¢ is necessarily true (at a possible world s). Instead, they looked at the
logic—or the governing laws—of sentences involving the necessity operator. They
axiomatically described the laws via a derivability relation -, where - ¢ means that
¢ is logically provable—or ‘derivable’—from the chosen axioms.® The relation I ¢
is meant to track the still to be formally defined semantic validity F ¢ (truth at every
possible world in every model). Although purely syntactic, - still captures much of
the (unknown) semantics and it still can be philosophically assessed by discussing
the plausibility of its axioms.

Hence we now also play the logicians’ trick: We do not define the semantic rela-
tion M, s F ¢ explicitly, but rather make assumptions about the behavioral laws. So
a derivability relation I- then describes those behavioral laws that we can derive from
these assumptions. Just like in modal logic, we also distinguish two types of assump-
tions: the logical axioms (which we describe below) and the ‘contentful” assumptions
specifically about robustness and trustworthiness (which we describe in Sect. 4).°
Thus, every Al-model with a choice of formal semantics for O (e.g., Kripke seman-
tics) gives rise to a derivability relation -, which describes the behavioral laws. The
logical axioms governing the derivability relation describe a minimal logic of robust-
ness, and the contentful assumptions strengthen this logic. Even if the behavioral
laws do not specify whether a particular behavior ¢ is shown in a particular state of
the Al-model, they still describe many important aspects of the Al-model. In particu-
lar, to say that the Al-model is robust concerning its classification of the digit 2 is to
say that - po — Opo.

In the remainder of this section, we formally define our notion of language and the
logical axioms on the behavioral laws, i.e., the derivability relation. (For a reference
on modal logic, see Blackburn et al., 2001.)

8 Typically, I is just a unary relation because ¢ - ) (i.e., % is derivable from ¢) is equivalent to - ¢ —

°In modal logic, the logical axioms include (at least for normal modal logics), e.g., the K-axiom
O(p — ¥) — (O¢ — Ov); while the ‘contentful” axioms, that are specific to different interpretation
of O, are, e.g., the T-axiom O¢ — ¢, which holds when O is interpreted as knowledge but not if it is
interpreted as belief.
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As already indicated, the language is defined as follows. We choose a nonempty
(finite or countably infinite) set of atomic sentences At. We recursively build complex
sentences: if ¢ and v are sentences, so are —p, ¢ A ¥, Oy, D . We write L for the set
of all sentences. We define the usual abbreviations (for some p € At):

VP == A ) Li=pA-p
== VY O = -0~y
peoYi=(p2 )N = @) opi=-0 .

We use the variables p, q,r, ... to range over atomic sentences and ¢, ), X, ... to
range over sentences. For our purposes, a propositional language is enough: We do
not need further syntactic structure on the atomic properties like first-order quantifi-
cation. The language £ is a well-known bimodal language (Shehtman, 1999).

A derivability relation (or logic) I is a set of sentences (i.¢., a subset of £) satisfy-
ing the axioms A1-A4 below. Here we write | ¢ iff sentence ¢ is in the set .

Al If ¢ is a truth-functional tautology,'? then F (classical logic)
If-pandF ¢ — 9, then - ¢ (modus ponens)
A2 FO(eAY) — (OpADOY) (distributivity for O)
IfF @ <, thent Op < OV (congruence for 0)
A3 Ifk ¢, thenkFoop (necessitation for o )
If-p — Y, thenkop — o (semi-congruence for ©)
A4 1L (consistency)

In words, axiom Al says that we follow the scientific standard of basing our rea-
soning on classical logic.!! For example, if ¢ is a tautological behavior, it is shown
at every state in every model. (After deriving the no-go result, we discuss in Sect.
8—as a way out—the idea of weakening the underlying logic to some non-classical
logic; but, for now, we go with the standard choice of logic.) Axiom A2 says that O
distributes over A, and that provably equivalent sentences can be substituted inside
a O-context. Axiom A3 says that o satisfies necessitation (if ¢ is provable, so is
B ¢) and that also the ‘implication-version’ of the substitution of provably equiva-
lents holds. Finally, axiom A4 says that the logic is consistent. Note that a typical
assumption for modal operators is that they are normal, i.e., validate the K -axiom
(O(¢ — ¥) — (Op — OY)) and necessitation. For 0O, this implies the axiom A2,
and for @, this implies axiom A3.

1"More precisely, there is a sentence x with atomic sentences p1,...,pn and there are sentences
Y1, ...,%n such that ¢ is the result of replacing each occurrence of p; with ¢; (forall = 1,...,n)and
x only contains Boolean connectives (i.e., —, A) and is a classical tautology (i.e., true under any classical
valuation).

'Here, we do not assume uniform substitution because, if - describes the sentences that are valid in a
model with a fixed interpretation of the atoms, we might have, e.g., = p — Op but not - ¢ — Og, so we
cannot substitute g for p (cf. Williamson, 1999, p. 129).
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4 Principles about robustness and trustworthiness

To recall, given any Al-model (or a class thereof) and interpretation of robustness, we
denote the behavioral laws ¢, i.¢., those behaviors that are always shown, as - . In
the preceding section, we collected some logical axioms about . In this section, we
collect some further ‘contentful’ principles about robustness and trustworthiness. We
write T for the set of behaviors on which the AI-model can be trusted, but since we
do not know exactly which behaviors belong to T', we only formulate assumptions
about T that seem plausible regardless of what its elements are.

4.1 Factivity

The first principle does not yet involve 7" but simply requires that robustness is factive:
If the Al-model shows behavior ¢ robustly, then it in particular shows behavior ¢.

Pl Veoel:FoOp—o (Factivity)

On the intuitive reading of 01 as ‘for all relevantly similar states’, this axiom is highly
plausible: whatever ‘relevantly similar’ means exactly, a state arguably should be
relevantly similar to itself, so if it satisfies D it also satisfies ¢.!?

So what could be objections to Factivity? In Sect. 6.3, we will consider one expli-
cation of robustness which fails Factivity. This explication reads Oy as ‘with high
probability also similar states show behavior ¢’. This explication fails Factivity since
high probability does not imply truth. However, even then, we will argue that the fol-
lowing weaker form of Factivity still is very plausible:

Pl! VpeT: OOy —Opand FOp — Cp (Weak-factivity)

Factivity indeed implies Weak-factivity: The quantification is now only over sen-
tences in 7T; the first conjunct is Factivity but restricted to sentences with a leading
diamond; and the second conjunct is implied by Factivity, since Factivity implies
(@ = @) Alp = o).

Our impossibility result will only need Weak-factivity and not full Factivity. So
the upshot is that, even if, for most explications of robustness, Factivity is valid, our
impossibility also applies to explications that only satisfy Weak-factivity, like the
probabilistic explication.

4.2 Robustness

We have already encountered the next principle: that trustworthiness should imply
robustness—as the expert group requires (High-Level Expert Group on Artificial
Intelligence, 2019).

P2 VpeT:Fep—0Op (Robustness)

12Indeed, the axiom Og — ¢ is known as the T-axiom in modal logic and is validated by Kripke frames
whose accessibility relation is reflexive.
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In words: If the Al-model shows trustworthy behavior on an input (or, more generally,
in a state), then it shows this behavior robustly, i.e., also on relevantly similar input (or
states). In particular, to trust the Al-model in its behavior, it should not be adversari-
ally attackable. Interestingly, related ideas are discussed in epistemology. To to put
this principle into philosophical perspective, we sketch this analogy in the remainder
of'this subsection. See Hornischer (2021, ch. 8), Vandenburgh (2023), and Grote et al.
(2024) for such connections between knowledge and trustworthiness.!'

The basic idea of the analogy is that behavior is to trustworthy behavior what
belief is to knowledge. This may well be an analogy and not a similarity (Gentner,
1983): i.e., behavior may be dissimilar to belief (if one does not anthropomorphize),
but the relations between behavior and trustworthy behavior on the one hand might
be similar to the relations between belief and knowledge on the other hand. If the
Al-model classifies a given image as depicting the digit 2, then whatever it takes
to render this behavior trustworthy is similar to whatever it takes to turn a belief
into knowledge. Let us consider two examples of how this idea may help to transfer
insights from epistemology to Al, specifically concerning robustness. The focus here
is on illustrating such a transfer, not on working it out in detail.

First, the analogy suggests that principle P2 corresponds to the so-called safety condi-
tion for knowledge. This condition identifies a feature of knowledge that mere belief need
not have. It says that knowledge requires safety in the sense that, if we know that p is the
case, we still would not be wrong in similar cases.!* This is illustrated by Russell’s famous
stopped clock (Russell, 1948, 170f.): We look at a clock with the intention of coming
to know what time it is. Incidentally, at this very moment, the clock shows the right
time, but, unbeknownst to us, it actually has stopped exactly 24 hours ago. Intuitively, we
would not consider the true belief about the current time that we obtained in this way to
be knowledge. And, indeed, in the very similar case where we had looked at the clock
just one minute earlier, we would have been wrong, so the safety condition is violated.'®
There is much discussion on how to formulate the safety condition precisely, but it usually
runs along the following lines: If a knows p based on a method m in situation s then, in all
situations s’ similar to s, if @ believes p in s’ based on m, then p is true at s’. So, if safety
needs to be added to belief to get to knowledge, how is this relation transferred—via the
analogy—to behavior of Al-models? Plausibly, robustness needs to be added to behavior
(among others) to get to trustworthy behavior—just like principle P2 requires. Surely this
needs a more thorough discussion, but it suggests a potentially fruitful application of the
extensive philosophical discussion of safety conditions to trustworthiness in Al

Second, the analogy suggests that trustworthiness is as elusive a concept as knowl-
edge. Just as it is notoriously hard (if at all possible) to specify what else is required to
turn (justified and true) belief into knowledge, it plausibly is equally hard to specify what
else is required to turn (well-trained and correct) behavior of an Al-model into a trustwor-

13 Whether such modal conditions for knowledge are compatible with best practices in statistics is dis-
cussed, e.g., by Mayo-Wilson (2018) and Fletcher & Mayo-Wilson (2024), which we will pick up again
in Sect. 8.

14See, e.g., Williamson (2000), Sosa (1999) and, for an overview, Ichikawa & Steup (2018) and Rabinow-
itz (2024). For other ‘stability-requiring’ notions in epistemology, see Rott (2004).

13 Closely related to the safety condition is the idea that knowledge should not involve epistemic luck: in
the example, we were just lucky that our belief turned out to be correct (Pritchard, 2005).
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thy behavior. In other words, the analogy casts doubt on the prospect of a fully satisfying
conceptual analysis of trustworthiness into crisp and operationalizable sufficient and nec-
essary conditions. To make this point, the analogical counterpart to the infamous Gettier
examples (which obstruct an analysis of knowledge) may be adversarial attacks. Con-
sider a deep neural network that correctly classifies a camera input as containing a stop
sign but that can be adversarially attacked. Then this classification behavior not only is
correct (the analog of being true) but it also is well-trained (the analog of justified), since
the classification is produced after a long training process. Yet, the classification behavior
of the Al-model is not trustworthy, since it can be adversarially attacked. So the Al-model
has the analog of justified true belief but not the analog of knowledge—just like a Gettier
case. Again, this needs further discussion. For example, the above kind of justification is
‘internalistic’, and an attempt to explain away Gettier examples is to demand that justifi-
cation should instead be externalistic (Ichikawa & Steup, 2018). It would be interesting
to consider what the analogical counterpart is for Al

4.3 Countermodels
The next principle is a minimal falsifiability requirement:
P3 VoeT: F-p—oOnp (Countermodels)

In words: For any trustworthy behavior ¢, if, on some input (or state), the Al-model
does not show behavior ¢, then there also should be some input (or state) on which it
robustly does not show behavior . This input (or state) thus is a good countermodel
to showing behavior p—hence the name.

For example, it may be that the Al-model does not classify an input s as depicting the
digit 7, because that input is on the decision boundary between a 1 and a 7. By slightly
enhancing the characteristics of a 7, we get a similar input s’ which the AT-model classi-
fies as 7. So it is not the case that the Al-model robustly does not show behavior p,. How-
ever, all that the principle requires is that if p is trustworthy, then there is some input on
which the Al-model robustly does not show behavior p,. This input may be, for example,
a clearly written 2 or even a completely black image. The Al-model will robustly not
classify them as a 7—otherwise p, arguably was not trustworthy in the first place.

The bigger the state space, the easier it is to satisfy principle P3. For example, let us
consider states as pairs s = (M, z) where M is an Al-model that can take x as input.
Then, to satisfy principle P3, we only need to find some model that robustly does not
show behavior ¢ on some input. Conversely, if the conclusion of the no-go result is that
this principle must be violated, then it does not just say that the present model cannot
robustly show some behavior, but, in fact, no model can (cf., e.g., Bastounis et al., 2024).

4.4 Moore-closure
The last principle requires a certain closure property of the trustworthy behaviors.

P4 VoeTIeT: Fy+ pViayw (Moore-closure)
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In words: If ¢ is a trustworthy behavior, so is ¢ V O, up to logical equivalence.
Before discussing its plausibility, let us explain the name.

Moore sentences are known from epistemology (e.g., van Benthem, 2004). They
are sentences of the form ‘p, but I do not know it’ or, as a formula, p A =Op. They
are important because they can be true but one can never know them: otherwise one
would know p and (know that) one does not know p. (They play an important role in
Fitch’s paradox, as we will see in Sect. 5). Instead of knowledge, we interpret 0 here
as robustness, but the formulas are unchanged: Given a sentence , we define the
Moore sentence and the dual Moore sentence of ¢, respectively, as

My := ¢ A O Wy := ¢V O,

where W is dual to M in the usual sense that W is equivalent to ~M—p.

Here we only consider W. Intuitively, M, s E W says that, on input (or state) s,
either the Al-model M already shows behavior ¢ or else it robustly does not show
behavior . In other words, M, s F N means that, on input (or state) s, the Al-model
cannot be @-tricked: it cannot be tricked into showing behavior ¢ (if it currently
does not show this behavior) by providing a very similar input (or state). Thus, N¢
describes behavior of the Al-model that we naturally are interested in when assessing
the trustworthiness of the model: after all, if the model can be tricked into classifying
an input as, say, depicting digit 2, it intuitively did not have high (objective) certainty
when it did not classify the input as depicting digit 2.'°

Now, the principle demands: if behavior ¢ is trustworthy, so is Wy, i.e., it is
trustworthy that the Al-model cannot be ¢-tricked. This seems plausible: As just
discussed, for behavior to be trustworthy, we should have some certainty, reason,
or evidence that the Al-model cannot easily be tricked into it, and this justification
hence also renders W trustworthy. We also show formally that this principle is satis-
fied on natural explications of robustness (Sect. 6).

5 The no-go result

Now we can state the no-go result (Sect. 5.1) and discuss the idea of the proof, which
utilizes Fitch’s lemma (Sect. 5.2). The formal proof is in Appendix A.2.

5.1 Statement of the result

Let us summarize the framework that we now have in place to state the no-go result.
We have a language L to describe the externally observable behavior of Al-models,
including their robustness. This behavior is realized in the internal states of the Al-
models. The derivability relation - describes the behavioral laws: those behaviors
that are shown in every state in the considered Al-models. The set 7" contains those
sentence describing trustworthy behavior. We neither know F nor 7" exactly, so we

16For an overview of uncertainty quantification in deep learning, see, e.g., Abdar et al. (2021), Hiillermeier
& Waegeman (2021) and for a connection with robustness Gustafsson et al. (2020).
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have collected four prima facie plausible principles about them, in addition to the
logical axioms A1-A4.

The no-go result now provides new insights about robustness and trustworthiness,
as encoded in F and 7: namely, these four principles imply triviality.

Theorem 2 For any derivability relation & (describing the behavioral laws) and set
of sentences T (describing the trustworthy behavior), the principles P1—P4 imply
triviality, i.e., Yo € T : = O > Q. This still holds when replacing P1 by P1'.

Thus, whatever the behavioral laws are () and whatever behavior is trustworthy
(T), at least one of the prima facie plausible principles has to go, unless the trust-
worthy behavior is trivial. Here triviality means that, for any state of a considered
Al-model, as soon as it shows the trustworthy behavior ¢ on some similar state, it
actually shows this behavior on @/l similar states. Intuitively, then, there are no deci-
sion boundaries for trustworthy behavior ¢, i.e., there are no states in the considered
Al-models with close-by (-states on one side and close-by —-states on the other
side. It is in this sense that trustworthy behavior is trivial. Thus, Theorem 2 is a modal
collapse argument: trustworthy sentences are modally trivial (cf. the modal collapse
argument of Quine, 1960, 191f.).

In Sect. 6, we will discuss the consequences of the no-go result and whether trivi-
ality should be accepted or some of the principles should be given up. But first we
discuss, in the next subsection, the idea of the proof.

5.2 Proof idea: reinterpretation of Fitch’s paradox

The proof relies on a reinterpretation of Fitch’s paradox in terms of robustness. Here
we (1) recap Fitch’s paradox, (2) state our reinterpretation, and (3) describe the idea
of the proof. The formal proofis in Sect. A.2.

(1). Fitch’s paradox is also known as the Church—Fitch paradox or the para-
dox of knowability. Nowadays, it is stated as follows: If all truths can be known
(Vp : p — O Kp), then all truths are already known (Vp : p — Kp). The contraposi-
tive implication was first published by Fitch (1963) acknowledging an anonymous
referee who, much later, was discovered to be Alonzo Church. (See Brogaard &
Salerno, 2019 for a brief history.) Even though Fitch worked in the context of value
concepts, the implication is mostly interpreted in the above form as an objection to
verificationalism, i.e., the view that all truths are knowable (Brogaard & Salerno,
2019).

In more precise words, the formal implication

Vp:p— < OKp = Vp:p— Kp,

which is also called Fitch’s lemma, can be established with fairly minimal proof-
theoretic assumptions on the modal operators < and K. It gains philosophical mean-
ing by interpreting the quantifier as ranging over all declarative statements and the
modal operators as describing metaphysical possibility and knowledge, respectively.
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(2). Here we wish to provide another interpretation in terms of robustness: First,
we make explicit the set 7" of sentences that we quantify over. In the original version,
this was the set of all (declarative) sentences. Thus, we can account for the worry
that not all sentences are subject to verificationalism but only those of a certain logi-
cal form (cf. Dummett, 2001). Second, and most importantly, we suggest a different
interpretation of the modal operators. We (re-) interpret the metaphysical possibility
operator < as the global possibility operator © and we (re-) interpret the knowledge
operator K as the robustness operator [J.

For example, while, in the original interpretation, the formula Vp : p — O Kp
expressed the knowability principle, in our reinterpretation, the formulaVp : p — ¢ Op
expresses the idea that all behavior can be robust. Here, we will not assume this prin-
ciple in full generality but only in the restricted form of principle P3: i.e., we do not
assume it for all p, but only for negations of trustworthy behaviors, i.e., sentences of
the form - with ¢ € T

(3). Now, the idea of the proof'is as follows. Given a trustworthy behavior ¢ € T,
we need to show - Cy <+ Og. By the Robustness principle, we have - ¢ — Oep.
By Factivity, we have - Oy — ¢. And an easy argument shows that Factivity also
implies ¢ — < (apply the contrapositive version of Factivity to —¢). So it remains
to show - Cp — . Toward a contradiction, assume this fails. So there must be
some state s with s £ G but s ¢, i.e., s = -O—¢ A —p. Equivalently, s F —),
where ¥ := ¢ V O—p. But by the Moore-closure principle, we have ¢ € T (up to
equivalence). So the Countermodels principle applies and we get - —¢ — © 0.
Since s F =1, we also have s F © O—1). We now argue that this cannot be. Indeed,
it implies that there is a (potentially different) state s’ with s’ F O—. Recall that
—) is equivalent to —@ A ~O—¢. Further, robustly showing behavior ¢ A g
implies robustly showing behavior ¢; and robustly showing behavior 5. Hence
s’ robustly shows behavior = and s’ robustly shows behavior —O0—¢. By Factiv-
ity, s’ also shows behavior =O0—. Hence, writing x := O-y, we have s’ F x and
s’ E —x, which is the desired contradiction. As mentioned, the fully formal proof
is in Appendix A.2, which also shows why in this proof we actually only need
Weak-factivity.

6 Consequences of the no-go result

The no-go result provides a very general limitation for robustness and its interplay
with trustworthiness: no matter how we understand these concepts, we can never
satisfy all the principles from Sect. 4 without trivializing. As with any no-go result,
this prompts the question: do we need to bite the bullet of triviality or should we give
up one of the initially plausible assumptions? In particular, what does this mean for
the goal of formalizing the concepts of robustness and trustworthiness, so that they
can be verified for Al-models?

We start this discussion in Sect. 6.1 by considering the concrete explication of
robustness via a metric and a threshold, as in the case study from Sect. 2. We find that
all principles are satisfied (thus corroborating the principles), so we need to accept the
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triviality in this case (and we also discuss the severity of the triviality). This is exactly
the special case that we saw as Theorem 1.

Looking for ways to avoid the triviality, we are lead to an important conceptual
distinction in the explication of robustness, which we explore in Sect. 6.2. The just
mentioned explication is uniform in the sense that it has a fixed robustness range ¢
that should work for all states of the Al-model. But we can also consider non-uni-
form explications where we only require for each state some robustness range. This
distinction between uniform and non-uniform robustness matches exactly the two
most common semantics for modal logic: Kripke semantics and topological seman-
tics, respectively. We find that, on this weaker non-uniform robustness, we can avoid
triviality. Hence, by the no-go result, we also have to give up at least one principle:
indeed, we show that the Countermodels principle is violated.

In Sect. 6.3, we explore a third, probabilistic explication of robustness, which is
a ‘smoothened’ version of uniform robustness and which also can avoid triviality.

We discuss the three explications of robustness in Sect. 6.4.

6.1 Uniform robustness (Kripke semantics)

As seen in Sect. 2, the most straightforward formalization of robustness is via a met-
ric d on the input space X of the Al-model M and a threshold e. Thus,

o MM, s F piff the Al-model shows basic behavior p on input s (classifying it as hav-
ing label p, next word prediction p, etc.)

M,sE-piff M,sH ¢

M,sEpoANYift M,sE pand M, s FE Y

M,sF Opiff, forall ¢, if d(s, s’) < ¢, then M,s" F ¢

M, s Eoypiff, forall s, M,s" F .

With this explication, we have a concrete setting to discuss the consequences of the
no-go result. For the purpose of this discussion, let us stipulate trustworthy behav-
ior to be robust behavior, i.e., T := {¢ : M E ¢ — O¢}. In other words, for now,
we put to the side other conditions for trustworthiness than robustness. With these
choices, we can ask which principles are satisfied.

It is not difficult to show, that, in this setting, not only are all logical axioms sat-
isfied (defining - ¢ by M F ¢) but also all the principles P1-P4—the details are
in Appendix A.3. This corroborates the principles: they come out true on the most
straightforward explication of robustness. However, the flip side is that the no-go
result implies triviality: for all ¢ € T', we have M E Cp < O

Here is what triviality means in this setting. We can partition the input space X into
equivalence classes, where two inputs s and s’ are considered equivalent iff there is a
sequence of inputs s1, ..., s, € X such that s = s1, ' = s, and d(s;, s;+1) < € for
all 1 <7 < n. So we cluster together inputs that are connected by similarity. Trivi-
ality then means that, for trustworthy behavior ¢ € T" and any given cluster, either
the Al-model shows behavior ¢ on all inputs of the cluster or the Al-model does not
show behavior ¢ on all inputs of the cluster. In particular, this entails Theorem 1 as
a special case: if we additionally assume the input space to be path-connected, then
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the entire input space is one single cluster, so trustworthy behavior either is shown on
every input or on no input.

But is triviality really a bad thing? Arguably yes: The severity comes from the fact
that the triviality applies to all Al-systems. Sure, there might be some Al-systems
where the triviality is not an issue and, in fact, welcome. For example, take a binary
classifier that is well-trained on an input space (aka data manifold) in which the posi-
tive class and the negative class are nicely separated with respect to the metric that
we use to explicate robustness. So the positive class and the negative class form two
clusters in the input space and the Al-model has a trivial classification behavior in
each cluster. The problem is that there also are binary classification tasks where such
a clean separation is impossible. In the input space, there might be many data points
that have, within e-distance, both positively and negatively labeled data points. In
these cases, the classification behavior can never be robust, because, by the no-go
result, it would have to be trivial on a cluster.

This prompts us to look for ways to avoid triviality, so we should weaken our
notion of robustness—as it then becomes easier to obtain nontrivial robust behavior.
The problem with the preceding explication of robustness that has lead to triviality is
that we insist on a robustness range of some fixed € > 0, even when we are close to
the decision boundary. So an obvious weakening is to conceive of robustness as more
gradual: when we are close to the decision boundary, we expect a smaller robustness
range than when we are far away. Thus, while there might not be a uniform robust-
ness range € that works for all inputs s (3V), we can at least non-uniformly require
that for every input s there is some robustness range ¢ (V). This move also occurs
in margin for error principles in epistemology and vagueness (see, ¢.g., Williamson,
1994, sec. 8.3 or Egré, 2015, sec. 2).

Consequently, we only fix a metric d upfront and change the clause for robustness
to:

(*) M, s E Oy iff there is € > 0 such that, for all &', if d(s, s’) < ¢, then
M,s" E .

Thus, on the uniform explication of robustness, ‘relevantly similar’ is an absolute
and all-or-nothing matter: either two states s and s’ are similar, i.e., d(s,s’) < ¢, or
they are not. But on the non-uniform explication, it is a relative and gradual matter:
two states s and s’ are similar to degree € if d(s, ') < €; and non-uniform robustness
requires robustness for some degree of similarity.!”

6.2 Non-uniform robustness (topological semantics)

We saw an important conceptual distinction for robustness: uniform robustness
requires one fixed robustness range € > 0 that works for all states of the Al-model,

17Since the uniform robustness parameter € acts as a quantitative measure of the trustworthiness of the
Al-model, we also may want a weakened substitute. Following Ruan et al. (2019), we can take this to be
the expected value, across the different inputs s, for the maximal robustness range e that we can choose
for the input s.
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while non-uniform robustness only requires for each state some robustness range
€ > 0. Uniform robustness satisfies all principles but hence, by the no-go result, trivi-
alizes. We will now see that the weaker non-uniform robustness indeed can deliver
nontrivial behavior that still is robust in that weaker, non-uniform sense.

Before we get there, we first observe that non-uniform robustness has a crucial
advantage over uniform robustness: not only does it quantify away the threshold
€, it also is independent of the metric (provided the metric comes from a norm, as
described shortly). This is important because, in practice, various metrics are used
(e.g., Ly, L, L,, or Wasserstein), and it generally is regarded as an open problem
which is the right notion of distance (see, e.g., Freiesleben, 2022, sec. 5.2, for discus-
sion). Typically, the metrics on the input space X C R"™ are given by a norm, and it is
a basic mathematical fact that all these norms are equivalent in the sense of determin-
ing the same topology, namely the usual Euclidean topology on R"™. Hence clause ()
for non-uniform robustness can equivalently be expressed as:

(xx) M, s E Oy iff there is an open set U C X with s € U such that, for all
s’ € U,wehave M,s' E .

This is exactly the topological semantics for modal logic (e.g. van Benthem &
Bezhanishvili, 2007).

Now here is how we can avoid triviality on this explication. Let us again stipu-
late, for the purpose of this discussion, trustworthy behavior to be robust behavior,
ie,T:={¢: ME ¢ — Op}. Now consider an open set U C X that is not closed
(e.g., an open interval (a,b) C R in the case of dimension n=1). We can regard U
as a behavior p by defining: M, s F p iff s € U. Then p is a nontrivial trustworthy
behavior, i.e., p € T and M (= Op <> Op (see Appendix A.4 for a proof). The com-
mon topological spaces have plenty of open set that are not closed, so we get plenty
of robust behaviors that are not trivial, as desired.

Since non-uniform robustness is built on the topological semantics, it satis-
fies all the logical axioms, so our no-go results applies. Since we avoid triviality,
at least one of the principles P1-P4 must be violated. Which one? It is not diffi-
cult to show that Factivity, Robustness, and Moore-closure are satisfied (again, see
Appendix A.4). So the Countermodels principle must fail: there must be 1) € T" such
that M ¥ —¢ — © O—p. In fact, ¥ can be chosen as W for any nontrivial behav-
ior ¢ € T. Recall that N says that the Al-model cannot be -tricked. So we have
(proof in Appendix A.4):

For every nontrivial robust behavior ¢ (open and not closed), the Al-model can
be ¢-tricked (W is false on some inputs) but for generic inputs it cannot (INg
is generically true, i.e., an open and dense set).

Indeed, on the non-uniform explication of robustness, there is no reason to expect
the Countermodels principle: Violating Ny amounts to being on the decision bound-
ary for , which (literally) is the topological boundary of the set of states satisfy-
ing ¢ (proof in Appendix A.4). If ¢ is nontrivial robust (open and not closed), this
boundary is nonempty, so N can be violated. However, N can never be robustly
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violated, since it would require a nonempty open subset of the boundary of , which
is topologically impossible since ¢ is open.'®

In sum, on the non-uniform explication of robustness, we can have nontrivial
robust behavior and we should give up the Countermodel principle. In that sense,
non-uniform robustness fares better than the too strong uniform robustness, but on
the other hand one might argue that non-uniform robustness is too weak a notion of
robustness, which we discuss for the remained of this subsection.

The argument goes as follows. We said that norm-based metrics are usually used
to define distances in connection with robustness, and all these metrics induce the
Euclidean topology on the input space. So this is the natural topology on the input
space when discussing non-uniform robustness. But this renders too many Al-models
robust: Consider a binary classifier M that takes pixel images s € R™ and outputs ‘yes’
or ‘no’ depending on whether the image depicts a stop sign. Say this classifier has a
typical neural network architecture; so it realizes a function N : R™ — [0, 1] which has
been trained to output the probability N(s) with which it takes the image s to depict
a stop sign, and the classifier outputs ‘yes’ once this probability exceeds, say 0.9. So
[Pyes] = {s € R™ : M, s E pyes} is the set of pictures the classifier takes to depict a
stop sign. Since typical neural networks are continuous functions with respect to the
Euclidean topology, [pyes] = N~1((0.9,1]) is open. But this now means that, accord-
ing to non-uniform robustness, any such classifier automatically is robust in classifying
stop signs, regardless of how it was trained! So non-uniform robustness does not track
the intuitive notion of robustness according to which many such classifiers are not robust.

What to make of this argument? Initially, one might take issue with the fact that
the robustness range e can get arbitrarily small. After all, a robustness range below
computer precision is practically useless. So one might want to require a minimal
robustness range. However, then one is back with uniform robustness and its prob-
lems resurface. As another option, then, one might consider other topologies than the
Euclidean one, giving up the idea that the topology comes from some norm-based
metric. After all, the appropriate topology that captures similarity between images
according to human cognition may be different from the ‘low-level” Euclidean topol-
ogy on the pixel values. Presumably, not every open set of the latter topology is open
in the former topology, so the preceding argument that non-uniform robustness is too
weak does not go through anymore.!® Yet further options are to use other formalisms
to explicate robustness. Among the broadly topological options are neighborhood
semantics (Pacuit, 2017) or the d-semantics (van Benthem & Bezhanishvili, 2007,
sec. 3.1). One could also consider the robustness analysis of Moggi et al. (2018,
thm. A.2) using domain theory (which is used in Zhou et al., 2023).

Yet another option is to consider a conceptually different explication of robustness
in terms of probability, which we explore next.

8 However, this changes if we add the requirement that trustworthy behavior should not only be open but
in fact regular open (a set is regular open if it is the interior of its closure). Then Countermodels holds but
Moore-closure fails.

19 Arguably, the topology capturing a human notion of similarity ‘supervenes on’ the Euclidean topology,
i.e., is coarser: if an input s is in an open set U of the human-similarity topology, there should be some
small threshold € > 0 such that all inputs s’ that are at least e-much low-level similar to s also are high-
level similar to s—hence U also is Euclidean open.
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6.3 Probabilistic robustness

Instead of a metric/uniform or topological/non-uniform explication of robustness, we
can also consider a probabilistic explication (as already mentioned in Sect. 4.1).2° Let
us consider two motivating examples.

First, we could attempt to ‘smoothen’ the all-or-nothing nature of the uniform
explication of robustness. There, to recall, we chose a metric d and a range € > 0
and defined s F Oy iff, for all &', if d(s, s’) < ¢, then s’ E ¢. The range € provides a
sharp cut-off point: states s” within the range are considered, states outside are not. To
smoothen this cut-off point, we can instead choose a probability measure A/, (e.g., a
multivariate normal distribution centered at s) such that states s’ with small distance
to s have high M -probability and states s’ with large distance to s have low M -prob-
ability. Thus, we do not exclude states s’ outside of the e-range, we only give them
lower probability. Then, for some threshold 7 € [0, 1]—e.g., 7=0.7—, we define

M M,sEOpiff M;({s': M,s' E p}) > 7.

Thus, we do not ‘sharply’ require that all states within range € have property ¢, but
rather we ‘smoothly’ require that most states do. More precisely, when we sample
states in such a way that similar states are more likely, then the probability that ¢
is satisfied is high, i.e., above 7. (Also cf. the probabilistic explication of robustness
mentioned in footnote 17.)

Second, another example for a probabilistic notion of robustness comes from
Al systems that generate output probabilistically. Specifically, consider LLMs.
While they deterministically compute next-token probabilities, the generation of
the output is still probabilistically done via a decoding method (e.g., Top-K or Top-
P sampling). Thus, we can conceive of a state s as a pair (x, y) where z is a prompt
and y is a generated output, and we have a probability measure M (determined
by the decoding method) where M (y|z) describes how likely output y is given
prompt x. Say, we consider the prompt xyp = ‘Tell me an interesting fact about
Paris’ and the LLM generates yy = ‘Paris is home to the Eiffel Tower’. We want
to make sure that the LLM did not just happen to mention ‘Paris’ in the output but
does so robustly. So we want that the probability of mentioning ‘Paris’ is high.
Formally, we consider the property p of states s = (x, y) that ‘Paris’ is mentioned
in y. We define s having p robustly, i.e., s E Op as M({y : (z,y) F p}z) > 7, for
some fixed threshold 7.

What these examples have in common is that we have a state space X(i.e., the
states that the AI model can be in), and for each state s € X, we have a probability
measure M,. In the first example, M describes the notion of ‘similarity to s’, and in
the second example, where s = (z,y) is a prompt-output pair, M, is the probability
measure that assigns a state («’,y’) the probability M (y'|z") if 2’ = 2 and otherwise
the probability 0. Formally, this is exactly the structure of a Markov process, i.c.,
M is a function M : X — A(X) where X is a nonempty finite set and A(X) is
the set of probability measures on X (Desharnais et al., 2002; Kozen et al., 2013).

20We thank an anonymous reviewer for urging us to say more on this.
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(For brevity, we restrict us here to finite state spaces, so we do not have to introduce
the concept of measurability.) We write M, for M(s). Our interpretation of robust-
ness, then, is a fragment of Markovian logic (e.g., Kozen et al., 2013; Fagin & Halp-
ern, 1994; Aumann, 1999; Heifetz & Mongin, 2001 and references therein). Given
7 € [0, 1] and a Markov process M : X — A(X), we start with an interpretation [
of the atomic sentences, i.e., I maps atomic sentence p to the set of states I(p) C X
where p is satisfied. For instance, in our second example, I(p) is the set of those states
s = (x,y) where output y contains ‘Paris’. Then we define:

M,skEpiffs € I(p)

M,sE-piff M,sH ¢
M,sEpoANYift M,sE pand M,s FE Y

M, s E Opiff Ms([¢]) > 7, where [¢] :=={s € X : M, s F ¢}
M, s Eoypiff, forall s, M,s" E .

As aresult, M, s F Op < Mq([¢]) > 1 — 7 (see Appendix A.5 for a proof).

The resulting logic is not a normal modal logic because the K -axiom is not satis-
fied (see Appendix A.5 for a counterexample). Importantly, though, it still satisfies
axioms A1-A4 on a derivability relation, when understanding + as validity in M
for a fixed interpretation I (and also when quantifying over all interpretations, see
Appendix A.5).

Moreover, as already indicated in Sect. 4.1, this explication of robustness violates
Factivity (i.e., = Oy — ¢): just because ¢ has high probability does not mean it
is true. However, we now argue that Weak-factivity P1’ is plausible. First, regard-
ing Op — < ¢, this is valid under the plausible requirement on the threshold that
T> % (proof in Appendix A.5). Second, regarding OO ¢ — < ¢, let us say that
Markov process M is z-coherent if, forall A C X and z € X,

if M,(A) >, then M,({y € X : My(A) <7}) <.

If M is 7-coherent, then it validates 0O ¢ — < ¢ for all ¢ and all interpretations /
(proof in Appendix A.5). Not every Markov process is z-coherent; however, a suf-
ficient condition is that, for all s € X, we have M({s}) > 1 — 7, i.e., each states
assigns a non-negligible probability to itself (see Appendix A.S for a proof). This
makes sense on a similarity interpretation: if A/, describes degrees of similarity to s,
then s should get a non-negligible degree of similarity to itself. In fact, z-coherence
in general seems plausible for our case: if state = considers states y likely that do not
consider event A likely, then z itself should not consider A likely. In other words, if
state x considers A likely, then x should not consider states with the opposite opinion
likely.

The other principles have the same motivation as before: Whatever the choice T’
of trustworthy behavior, P2 says that trustworthy behavior should be robust, P3 says
that every nontrivial trustworthy behavior is robustly not shown in some state, and P4
says that if ¢ is trustworthy, so is Wp = ¢ V O-, i.c., the claim that the Al-model
cannot be tricked into . Thus, our theorem applied to this specific explication of
robustness yields the following as the ‘smoothened’ version of Theorem 1.
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Corollary 3 Let 7€ [%,1], let M: X — A(X) be a Markov process, and let
I be an interpretation of the atomic sentences. Write &= ¢ if M,skE ¢ for all
s € X. Then, for every set T of sentences, the principles P1', P2, P3, and P4
imply triviality: Yo € T : F0p < O, ie., there is no p € T and s € X with
1 —7 < My([e]) <.

Here we make essential use of the fact that we do not need full Factivity but only
Weak-factivity to get our impossibility. The reason is that Fitch’s lemma actually
does not need full Factivity but only the axiom O—-O¢ — —O¢, known as nega-
tive infallibility. (On a doxastic reading of 0, this says that one’s beliefs about what
one does not believe are infallible.) Analogously, on our reinterpretation of Fitch’s
lemma, we also do not need full Factivity but only Vo € T : F 0Cp — O, Fora
discussion of Fitch’s paradox beyond factive operators, see San (2020).

So, for Markov processes, the four principles imply triviality. But is there even
a way to avoid triviality, when giving up on one of the principles? Yes, here is an
example. Let 7 = % and consider the two states X = {a, b} with the Markov process
M defined by M,({a}) = 2, M,({b}) = 1, My({a}) = 3, and M, ({b}) = 3. Con-
sider an interpretation with I(p) := {a}. Let T := {p}. Then we do not have trivial-
ity, since 1 — 7 < My([p]) < 7. Moreover, principles P1’, P2, and P4 are satisfied,
and principle P3 indeed fails (proof in Appendix A.5).

6.4 Discussion: uniform vs non-uniform vs probabilistic

We started this section with the ‘what to give up?’ question: whether, in light of the
no-go result, we should accept triviality or rather give up some of the principles. We
made the discussion concrete by considering three suggestive explications of robust-
ness: uniform, non-uniform, and probabilistic robustness. Here we summarize these
explications and discuss what they suggest for the ‘what to give up?’ question.

Uniform robustness satisfies all principles and thus provides some support for
the principles. By the no-go result, it trivializes, which is problematic in all but
the simplest Al tasks. So rather than taking uniform robustness to suggest that we
should accept triviality, the more plausible conclusion is that it is too strong a notion
of robustness. So we should look for weaker notions of robustness that allow for
nontriviality.

Thus, we have considered non-uniform robustness. It can easily afford nontrivial
robust behavior, but, by the no-go result, it has to give up one of the principles,
namely the Countermodels principle. Hence this explication fares better and tenta-
tively suggests rather giving up a principle than accepting triviality. However, we
also provided an argument that it is too weak a notion of robustness, because, for the
natural choice of the Euclidean topology, every classifier turns out to be robust.

As an intermediate notion we considered probabilistic robustness. As a ‘smooth-
ened’ version of uniform robustness, it can avoid triviality (in that sense it is weaker
than uniform robustness). It also does not render every classifier robust (in that sense
it is stronger than non-uniform robustness): If an input s gets classified positively,
it could still be, e.g., if sis close to the decision boundary, that M, assigns consider-
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able probability to inputs beyond the decision boundary, so the classification is not
robust on the probabilistic explication. However, whether probabilistic robustness is
a satisfying explication still needs further discussion: we come back to this as an open
question in Sect. 8.

7 Outlook: further applications

As an outlook, we highlight in this section the generality of the no-go result. Because
we only used a derivability relation - with very minimal assumptions and treated
T as just a variable for a set of sentences, we can give the no-go result many other
interpretations besides robustness.

As discussed in Hornischer (2021, ch. 8), a general interpretation of O is as stabil-
ity: M, s F Oy means that the (abstract) state s stably has the (abstract) property ¢ in
the considered model M, i.e., states that are relevantly similar to s still have property
. Thus, the stable properties are those ¢ that, if true, are stably true (i.e., ¢ — Oy is
valid in the model). This interpretation can then be applied to many instances of sta-
bility discussed in the philosophical literature. Some of the examples treated in Horn-
ischer (2021, ch. 8) are: stability under errors of measurement, stability of belief,
stability as invariance under transformations, and significance in mathematical mod-
eling. The no-go result then provides limitations for each of those interpretations.

Moreover, also within Al, we can give O a different interpretation. One is explain-
ability (Adadi & Berrada, 2018; Miller, 2019). Let us explore this in the remainder of
this section. Now M, s F Oy means that we can explain why the Al-model M shows
behavior ¢ on input s. As before, we now want to know: what is the explainable
behavior, i.e., the behavior that, if observed, we can explain? In other words, what
can we say about T'= {p : M E ¢ — Op}? Aiming for an answer with our no-go
result, note that principle P2 is satisfied by construction, and principle P1 requires
correctness of explanation: if we can explain why the Al-model shows behavior ¢ on
input s, the model in particular should show behavior ¢ (i.e., the explanation should
be faithful, see, e.g., Jacovi & Goldberg, 2020). To see principle P4, first note that
we arguably have - Oy — OO (which is known as the transitivity axiom in modal
logic): if we can explain why ¢, then we can also explain why we can explain why ¢
because we can point to our explanation of . With this, it is straightforward to show
thatifp € T,1.e., ¢ — O, thenalso Wy — OWep, i.e., Wy € T. Moreover, we
would expect nontriviality: For at least some ¢ € T, if we cannot explain why the Al-
model does not show behavior ¢ on input s, this does not mean that we can explain
why it shows behavior ¢ on input s, so <> ¢ — Oy should not be valid.?! As the axi-
oms also have some plausibility, our no-go result suggests that principle P3 must fail:
There must be explainable behavior ¢ and an input s such that the Al-model does not
show behavior ¢ on input s, but on no input can we explain why the Al-model does

2! This is familiar from the interpretation of O as (informal) provability. There we also do not have excluded
middle: just because we cannot prove that something is false does not mean we can prove it is true. (For-
mal provability behaves somewhat differently as it, e.g., violates Factivity Op — ¢, see Boolos (1993).)
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not show behavior . More concisely: the absence of some explainable behavior is
inexplicable!

To give a formal semantics for explainability, we might turn to truthmaker seman-
tics (Fine, 2017). Given our Al-model M classifying handwritten digits, we allow
as states pairs s = (x,2’) where 2’ is a part of the input image x (e.g., the 9 pixels
in the middle of image x). Then we interpret M, s E o as: 2’ is the part of the input
x that was most relevant for the model showing behavior . This is an example of
a feature attribution method in interpretable machine learning, and other explain-
ability methods could be considered as well. The point is that this aligns well with
the ‘exactness’ of truthmaker semantics. A state makes true a sentence in truthmaker
semantics iff it contains exactly as much information to make the sentence true—no
more, no less. Similarly, a feature attribution explanation should contain exactly the
information to explain the behavior. Accordingly, the clause for conjunction should
read: M, s E ¢ A1) iff s is the fusion of two parts s’ and s” such that M, s’ E ¢ and
M, s"" E 1). Thus, it would be interesting to compare the present no-go result with
impossibility results concerning feature attribution (Bilodeau et al., 2024).

8 Open questions

We have seen that we can fruitfully use tools from formal epistemology—and, in
particular, modal logic—to better understand robustness and trustworthiness. This
framework also suggests many open questions for further research, as we will see
now.

Bridges between Al and epistemology. Along the way, we have seen many connec-
tions between Al and epistemology, which we summarize in Fig. 1. Future research
should work out those connections because they are—as mentioned—useful in both
directions. It should also discuss to what extent modal conditions for knowledge—
and, analogously, for trustworthiness—are compatible with best practices in statis-
tics (Grote et al., 2024; Mayo-Wilson, 2018; Fletcher & Mayo-Wilson, 2024).%% This
is particularly important for a further evaluation of the probabilistic explication of
robustness—to which we will come below.

One important such connection is to consider solutions to Fitch’s paradox of
knowability that have been suggested in philosophy and see if they translate to pro-
viding nontrivial explications of robustness and trustworthiness.>* For an overview of
such solutions, see Brogaard & Salerno (2019). For example, Edgington (1985) sug-
gests to replace the knowability principle ‘all truths can be known’ with the principle
that ‘all actual truths are possibly known to be actual truths’, which does not lead to
paradox. Thus, the actual situation where the truth holds can be different from the
counterfactual situation in which the knowledge about this actual truth is obtained.
This has been criticized by Williamson (1987), but defended, e.g., by Riickert (2009)
who employs a careful distinction between the indicative and subjunctive mood (akin

22We are grateful to an anonymous reviewer for raising this point.

23Many thanks to an anonymous reviewer for suggesting this and the references to Wansing (2002) and
Riickert (2009) below.
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to the actuality operator); or by Schldder (2021) who employs possible ‘courses of
inquiry’. Yet another suggested solution is to change the underlying logic: So far we
followed the scientific standard of using classical logic, but some solutions suggest
moving to, e.g., relevant logic. We pick this up below, when discussing open ques-
tions concerning logic.

Moreover, one might take inspiration from robustness analysis in science (Weis-
berg, 2006; Woodward, 2006; Schupbach, 2018; Fletcher, 2020) and see how this
may be transferred to machine learning. In essence, robustness analysis is a method
to determine if a model makes trustworthy predictions by checking if different mod-
els of the same phenomenon make the same prediction. One way of transferring this
to machine learning would be to train different models of the same phenomenon by
using the same training dataset but varying, say, the seeds and hyperparameters. This
is familiar from ensemble learning and is used, e.g., in Wortsman et al. (2022) to
improve accuracy and robustness in fine-tuning large pre-trained models.

Furthermore, when it comes to further applications of the no-go result beyond
robustness, we outlined another application to explainability. We may similarly con-
sider further concepts like bias or fairness (e.g., express modally the various defini-
tions of fairness (Shmueli et al., 2023) and their joint inconsistency (Chouldechova,
2017; Kleinberg et al., 2017)).

Further exploring explications. We have seen three explications of robustness:
metric/uniform, topological/non-uniform, and probabilistic. While the no-go result
provides an argument against the metric explication, we already suggested, in Sect.
6.2, ways to further refine the topological explication. Moreover, the probabilistic
explication should be explored further. For example, turning probabilistic quantita-
tive statements into all-or-nothing qualitative ones has well-known problems. Notori-
ously, using a fixed threshold (less than 1) faces the lottery paradox, which threatens
the accepted qualitative statements to not be closed under conjunction (see Genin &
Huber, 2022 for background and discussion). More generally, there are issues relat-
ing approaches to evidence, justification, and knowledge in statistics with those in
epistemology (Fletcher & Mayo-Wilson, 2024), in particular when it comes to epis-
temic closure, i.c., the K-axiom (Mayo-Wilson, 2018)—which we did not assume,
though, in our probabilistic explication. Working these out—generally, but also in
the context of robustness in Al—is important, as stressed by Grote et al. (2024, p. 5).
One approach that, at least, avoids the former problem of the lottery paradox is the
stability theory of belief (Leitgeb, 2017). It requires, roughly, the statement’s high
probability to be stable under updating with further relevant information. Applying
this to Al-models thus suggests a probabilistic explication of robustness that is worth
working out (see Hornischer, 2021, ch. 8 for an initial discussion).

Logic. There also are various interesting questions about how to refine the modal
logic that we use to describe the Al-model.

First, we already mentioned that some suggested solutions to Fitch’s paradox of
knowability change the underlying logic (see Brogaard & Salerno, 2019, sec. 3 for
an overview). In particular, Wansing (2002) suggests a paraconsistent constructive
relevant modal epistemic logic, and there is a recent surge of interest in combining rel-
evant logic with epistemic logic (see, e.g., Bilkova et al., 2016; Puncochaf et al., 2023,
Sedlar & Vigiani, 2024, Standefer & Mares, 2025, to mention but a few). Also, Horn-

@ Springer



Synthese (2026) 207:22 Page 27 of 37 22

ischer & Berto (2025) provide an interpretation of relevant logic using dynamical sys-
tems, including neural networks. One might also interpret the conditional as expressing
qualitative laws about the behavior of the Al-model governed by non-monotonic logic
(Leitgeb, 2005). Finally, we can consider further ways of changing the underlying
classical logic to a hyperintensional logic (Berto & Nolan, 2021): namely, the already
mentioned truthmaker semantics as a potential formalization for explainability.

Second, we could also add a counterfactual (~) to describe counterfactual expla-
nations like ‘if you earned 10k more, you would have gotten the loan’ (Wachter et
al., 2017). Then M, s E ¢ ~» ¢ would mean something along the lines of: for the
inputs s’ closest to s where ¢ holds, also 7 holds.?* For an explication of this idea,
see Hudetz & Crawford (2022). Determining a sound and complete axiomatization
of such counterfactuals provides the logic of counterfactual explanations for the Al-
model, which helps to assess its philosophical plausibility.

Third, one can also add operators known from dynamic epistemic logics (Baltag
& Renne, 2016) to describe the learning dynamics of the Al-model and how this
changes its behavior. For example, s F [p2] could mean something along the lines
of: after learning that input s depicts the digit 2, the Al-model shows behavior ¢ on
input s. See, e.g., Baltag et al. (2019a, b) and Schultz Kisby et al. (2024). Similarly,
we could also use the modal u-calculus, so we can speak about the behavior of the
Al-model after training on a dataset, i.c., after having reached a fixed point of the just
mentioned learning process.

Quantitative version. Often, impossibility results spur possibility results by ana-
lyzing what still is possible. Is this the case here, too? Specifically, can we get pos-
sibilities when moving from a qualitative to a quantitative description of robustness?
For example, rather than just qualitatively describing whether the Al-model behaves
robustly on a given input, one might quantitatively analyze the robustness range € or
the probability of robust behavior (also cf. Freiesleben & Grote, 2023).

9 Conclusion

We have seen that the robustness and trustworthiness of Al-models can profitably
be investigated using modal logic. We formulated four prima facie plausible prin-
ciples about the notions of robustness and trustworthiness (no matter how they are
understood precisely). However, with a reinterpretation of Fitch’s lemma, we have
proven that these principles imply triviality. This has consequences for formalizing
the concepts of robustness and trustworthiness, which is necessary for verifying them
for Al-models. Specifically, a uniform notion of robustness is too strong, while a non-
uniform notion is too weak—with a probabilistic notion of robustness being a prom-
ising intermediary. We also noted the generality of the no-go result: it also applies to
explainability in Al and stability in philosophy. As indicated by the open questions,
there is much potential for a fruitful interaction between Al, on the one hand, and
logic and formal epistemology, on the other hand.

24Here it again matters what counts as close: which metric we use, whether we consider only realistic or
also adversarial inputs, etc. (Freiesleben, 2022).
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A Appendix

A.1 Proof of Theorem 1

Proof of Theorem 1 1If o € T were not trivial, there are inputs s and s’ with M, s F ¢
and M, s’ & . Since the input space is path-connected, there is a path from sto s’. By
dividing the path into sufficiently small steps, we get a sequence of points on the path
5=50,81,...,5Ny = & withd(s;,s;11) < €.2° Since M, sy F ¢ and trustworthiness
implies robustness, also M, so F O¢, so, since s, is similar to s, also M, s1 F ¢. But
now we can apply the same reasoning to s, and get that M, s = ¢. And so on, until
eventually M, sy F ¢, contradicting M, s' . |

A.2 Proof of Theorem 2

In its reinterpreted form, Fitch’s lemma states: If all false 7-sentences are robustly
false somewhere, they, in fact, are already robustly false:

Lemma 4 (Fitch’s lemma). Let - be a derivability relation and T a set of sentences
satisfying P1' and P4.°% Then (1) implies (2) where

. YVpeT: F-p— o0y
2. YpeT: F—p— 0.

The key idea for the proof is to substitute the (dual) Moore sentence into the
assumption via a proof by contradiction (see Sect. 5.2). The formal proof is a slight
adaption of the standard proof of Fitch’s lemma (e.g van Benthem, 2004; Brogaard &
Salerno, 2019). and goes as follows.

Proof Assume (1) and let ¢ € T'. To show - —=p — O—p, we show ‘by contradic-
tion’ that - —(—p — O—p) — L (using that (—x — L) — x is a truth-functional
tautology). We formally show this by a chain of conditionals. First, qua truth-func-
tional tautology,

E=(me = O¢) = —p A O, (1

Next, by P4, let v € T with F ¢ <> W¢p. Hence, by using the appropriate truth-
functional tautologies, - proves =) <> =Ny and =Wy < =@ A 0=, so

To be precise: Let P : [0, 1] — X be the path with X the input space and p(O) = S and

p(l) = 5. Since P is a continuous function from a compact metric space into a metric space, it is
uniformly continuous (Heine—Cantor theorem). So there is § > O such that, for all ¢,¢" € [0, 1]
Lif [t — /| < 0, then d(p(t),p(t')) < €. Let N > 1 be big enough such that % < § (which

exists by the Archimedean property). For ¢ = 0,..., N, set t; := % and S; 1= p(ti). Then
S0 = p(tog = pEO) =35 and 5, =p(t,) =p(l) =5 and, for i € {107 LN =1},
d(si, siy1) = d(p(ti), p(tiy1)) < esince |[t; — tip1| = |5 — %] = & <.

% In fact, only the first conjunct of P1" is needed, namely Voo € T : F OO¢ — .
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F —p A ~O-p 5 . )

Since ¥ € T, we have, by assumption 1, that
F-yY — oO0. 3)
By congruence for O and (semi-) congruence for ¢, Equation 2 yields
Feon(—v) ¢ oO(—p A —O-p). @)

By distributivity for 01 (i.e., - O(p A ¢) — (Op A O%)) and semi-congruence for
<,

FoO(me A—O-g) = o (0~ AO-O-). ®)

By P1', we have F O-0O-¢ — —O—-¢. By the truth-functional tautology
(o = ¥) = (x N p = x A ¢) and semi-congruence for ¢, we have

F o (O AO-O-) = ¢ (O-p A =O-p). (6)
By the truth-functional tautology (¢ A =) — L and semi-congruence for <,
Fo (O A-O-p) = oL 7

Finally, since - —_L (a truth-functional tautology), necessitation implies - @ —_L,
so - —¢ L, so, by the truth-functional tautology ~¢ — (¢ — L), we have

Fol— L. (8)

Now we can chain all these conditionals together?’ to get - —(—p — O-¢) — L,
as desired. |
Now we can easily prove the no-go result.

ProofofTheorem2 By P1’'and P4, Lemma 4 applies, so P3 implies, for any ¢ € T, that
F—-p — O, ie, FOp — . By P2, also - ¢ — Op. By P1', also - Op — O
SoVp € T : F g <+ Oy, as needed. Since P1 implies P1’, this reasoning also goes
through when using P1 instead of P1'. o

A.3 Proofs in Section 6.1

We show that, in the setting of uniform robustness described in Sect. 6.1, the logical
axioms A1-A4 and the principles P1-P4 are satisfied.

“More precisely, if F @ —>1% and F 1 — X, use the truth-functional tautology
(go — 1/)) — ((1/) — )() — ((p — X)) and modus ponens to obtain - ¢ — x.
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e Axiom Al: if ¢ is a truth-functional tautology, then M, s F ¢ reduces to a tauto-
logical truth-condition in the metalanguage, which hence is satisfied. Moreover,
if - ¢ and - ¢ — 4, then ¢ is true at all states and any state which makes ¢ true
also makes 1) true, so all states make 1) true, so F .

e Axiom A2 and A3: In this setting, O (resp., @) has the usual Kripke semantics
with the binary relation sRs’ iff d(s, s") < € (resp., sRs’ holds always). So these
are normal modal operators and hence satisfy A2 and A3.

o Axiom A4: We assume that there is at least one state s,s0 s ¥ 1, sol/ L.

e Factivity: We have M F Ogp — ¢ because similarity is reflexive: if s £ O, then,
since d(s,s) =0 < ¢, also s F .

e Robustness: If ¢ € T, then, by definition of 7, M F ¢ — .

e Countermodels: If ¢ € T and s F —¢ but there is no s’ with s’ £ O—¢, then, in
particular, s ¥ O—¢. So there is s’ with d(s,s’) < e and §' & -, ie., s E .
Since ¢ € T, we have M E ¢ — Oy, so s’ E O¢p. Since d(s', s) = d(s,s’) <,
have s F ¢, contradiction.

® Moore-closure: If ¢ € T'but p V O—¢ ¢ T, then there is s with s F ¢ V 00— but
s # 0O(¢ V O¢). By the latter, there is s’ with d(s, s') < e and s’ i ¢ V O—¢.
Since s’ F O, there is s” with d(s', ") < e and s” E ¢. Since M F ¢ — Oy,
also s F O¢p. Since d(s”,s") = d(s',s"") < €, also s’ F ¢, contradiction.

A.4 Proofs in Section 6.2
We work in the setting of Sect. 6.2, proving the claims made there:
e Claim:p € T and M }£ Op > Op.

Proof: First, it is not difficult to show: ¢ €T (i.e.,, ¢ is robust) iff
[¢] := {s € X : M, s E ¢} is an open subset of the input space X. Hence p € T'.
Second, it is a basic fact of the topological semantics that O is the topological
interior operator and < is the topological closure operator. Hence we cannot have
M = ©p < Op, because otherwise the closure of U, i.e., [¢p] is identical to the
interior of U, i.e., [Op], which implies that U is closed (and also open).

e (Claim: Axioms A1-A4 as well as Factivity, Robustness, and Moore-closure are
satisfied.

Proof: For the axioms we reason as in Appendix A.3, except for O, which is read-
ily seen to be a normal modal operator on the topological interpretation. Factivity
is satisfied since [O¢] is the topological interior of [¢]and hence a subset of
it. Robustness is satisfied by the stipulation T := {¢ : M E v — Op}. Moore-
closure is satisfied because, if ¢ € T, then [¢] is open, so also [¢] U [O—¢] is
open, and hence o V O—p € T.

e Claim: For every nontrivial robust behavior ¢ (open and not closed), the AI-mod-
el can be -tricked (W is false on some inputs) but for generic inputs it cannot
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(We is generically true, i.e., an open and dense set)

Proof: Failure of the Countermodels principle means that there is an input s
where N is true (hence Ny is false on some input) but © O—W¢ is false. The
latter means that O—IN¢ is false everywhere, i.e., ~O0-We is true everywhere,
so [¢WN¢] = X. Hence the closure of [¢] is the whole space, so W is dense.
Since N¢ € T, it also is open.

e (Claim: Violating Ny amounts to being in the topological boundary of [¢].

Proof: Note that [-We] = [-¢ A =O-¢] = [-¢] N [C¢]. Since [¢] is open
and < is topological closure, [-IN¢] is the closure of [¢] minus the interior of
[], which, by definition, is the topological boundary of [¢].

A.5 Proofs in Section 6.3

In this subsection, let 7 € [0, 1], let M : X — A(X) be a Markov process, and let [
be an interpretation. We prove the claims made in Sect. 6.3.

o Claim: M,skF Cp & My([¢]) > 1—7.
Proof: M, s E O iff M([—¢]) # 7iff 1 — Ms([¢]) < 7iff Ms(J]) > 1 — 7.

o (laim: The K-axiom is not valid for the Markov process interpretation. (The
counterexample can also be chosen to be z-coherent.)

Proof: Let T = % Consider the three states X = {a, b, ¢} and the Markov process
M which maps x € X to the measure M, defined by M, ({z}) = 4 > 1 — rand
M, ({y}) = § fory € X \ {z}. (The sufficient condition mentioned in the claim
below shows that this Markov process is 7-coherent.) Consider the interpretation
I'with I(p) = {a,b} and I(q) = {a}. So [p — q] = {¢,a}. Then a F O(p — q)
since M, ([p — q]) = 3 + 3 > 7,and a & Op since M, ([p]) = 2 + 1 > 7, but
a ¥ Oq since M,([¢]) = % AT

e (Claim: Axioms A1-A4 are satisfied when reading - as M, s F ¢ for all s € X.
This implies that this also holds when we define - by additionally quantifying
over all interpretations on M.

Proof: Regarding Al, we reason as in Appendix A.3. Regarding A2, we
have, for any se€ X, that M, ([o A¢]) < My([¢]), and similarly for
¥, so if Ms([p A¢]) > 7, then M(J¢]) > 7 and M([¢]) > 7, hence
Fo(e Av) — (Op A Oy). Moreover, if - ¢ > 1, then [¢] = [¢], so, for all
s € X, we have M,([¢]) > 7 iff M([¥)]) > 7, hence F Oy <> Ov. Regard-
ing A3, we use the fact that @ is a normal modal operator. Regarding A4, let,
since X is nonempty, s € X,s0 s 1,sol/ L.
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e Claim: If 7 > 1, then, forany ¢ € £ and s € X, we have M, s F Op — g

Proof: If M;([¢]) > T, then, since 7 > % >1—7,wehave Ms([¢]) > 1—7.

e Claim: If M is t7-coherent, then, for any o€ £ and s &€ X, we have
M,skEO0p — Op.
Proof: By contraposition, assume s 7 & and show M, s ¥ OO, By assump-

tion, s E O—p. Write A := [~¢]. Then M(A) > 7, so, since M is t-coherent,
M,({y € X : My(A) < 7}) < 7. Note that

{yeX:My(A) <7} ={yeX:yF O} =[0d].
So we have M, ([©¢] ) < 7. Hence s ¥ OO, as needed.

e Claim: There are Markov processes that are not z-coherent.

Proof: Let 7= % Consider the two states X = {a,b} and the Markov
process M defined by M,(a) =1 and M,(b) =2, and My(a) =32 and
My(b) = 4. Consider A:={b} C X and x :=a. Then M,(A) =2 > 7, but

Mo({y - My(A) < 7}) = Mo ({b}) = § £ 7.

e (Claim: Assume that, for all s € X, we have M ({s}) > 1 — 7. Then M is -
coherent.

Proof: Let A C X and s € X. Assume Ms(A) > 7. Then

Mg({y €eX:M,A)< T}) < MS(X \ {s}) =1- M{s}) <,
as needed.

e For the Markov process M defined in Sect. 6.3, principles P1’, P2, and P4 are
satisfied but principle P3 fails.
Proof: Recall that 7 =2 and M,({a}) =3, M.({b}) = 1, Ms({a}) = 3,
and M, ({b}) = 4, with I(p) = {a} and T = {p}. Since 7 > 3 and M satisfies
the sufficient condition for z-coherence, principle P1’ is satisfied. For P2, note
that if s F p, then s=a, so M,([p]) = % > 7, 0 s FE Op. Moreover, note that
[o-p] = 0, because if = = O-p, then M, ({b}) > 7, but M, ({b}) = 1 # 7 and
M,({b}) = § # 7. Hence P3 fails, since b —p but b & © O-p. Finally, prin-
ciple P4 holds, since, for ¢ € T, take ¢ := ¢ = p € T, then I ¢ <> W, since
[We] = [p] U [B-p] = [p] = [¥]-
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