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Abstract
A major issue for the trustworthiness of modern AI-models is their lack of robust-
ness. A notorious example is that putting a small sticker on a stop sign can cause 
AI-models to classify it as a speed limit sign. This is not just an engineering chal-
lenge, but also a philosophical one: we need to better understand the concepts of 
robustness and trustworthiness. Here, we contribute to this using methods from 
(formal) epistemology and prove a no-go result: No matter how these concepts are 
understood exactly, they cannot have four prima facie desirable properties without 
trivializing. To do so, we describe a modal logic to reason about the robustness of 
an AI-model, and then we prove that the four properties imply triviality via a novel 
interpretation of Fitch’s lemma. We then discuss the consequences for explicat-
ing a viable notion of robustness for AI. A broader theme of the paper is to build 
bridges between AI and epistemology: Not only does epistemology provide novel 
methods for AI, but modern AI also provides many new questions and perspectives 
for epistemology.

Keywords  Artificial intelligence · Robustness · Trustworthiness · Epistemology · 
Fitch’s paradox · Modal logic

1  Introduction

Despite the tremendous success of artificial intelligence (AI), a major issue for its 
trustworthiness is the lack of robustness. Paradigmatic examples are so-called adver-
sarial attacks: a minuscule change to the input of the AI-model—like some noise or 
a sticker—can yield a completely different output (Goodfellow et al., 2014; Eykholt 
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et al., 2018). For a principled response to the robustness problem, we not only need 
engineering solutions but also a better conceptual understanding of robustness and 
trustworthiness.

In this paper, we contribute to this conceptual understanding using methods from 
epistemology and logic. After all, these methods excel at understanding intuitive con-
cepts precisely: famously, this has been done for belief and knowledge, and here we 
transfer these methods to robustness and trustworthiness. An important upshot of 
this kind of analysis is to identify the limits of these concepts: how much of what we 
would want from them is actually achievable. Knowing such upper bounds of robust-
ness and trustworthiness is crucial in guiding both our expectations and engineering.

How are robustness and trustworthiness understood in AI? Let us start with robust-
ness. If not left intuitive, it usually refers to various forms of immunity to so-called 
distribution shifts. They occur when an AI-model is deployed—as common in prac-
tice—on input data sampled from a different distribution than the data on which it 
was trained: e.g., when the model was trained on patient data from a few hospitals 
but is deployed at many hospitals (Koh et al., 2021). Recently, a unified conceptual 
analysis of robustness—that includes distribution shifts—was provided by Freiesle-
ben and Grote (2023, p. 1) as “the relative stability of a robustness target [e.g., the 
deployment performance of the AI-model] with respect to specific interventions [e.g., 
shifting] on a modifier [e.g., the deployment distribution]”  (cf. Braiek & Khomh, 
2025). Examples include the following.

1.	 The already mentioned adversarial attacks can be seen as synthetic distribution 
shifts: the AI-model is deployed on artificially shifted inputs (Taori et al., 2020).1

2.	 But the AI-model should also be robust to natural distribution shifts: those aris-
ing in the real world, e.g., when the images come from different surroundings and 
lighting conditions than those seen during training (Taori et al., 2020).

3.	 Performativity is also a form of distribution shift: The prediction of an AI-
model—say, whether a person gets a loan—supports decisions of the bank which 
leads some applicants to manipulate their features towards more favorable out-
comes. This changes the distribution to which the AI-model is applied. Ideally, 
the AI-model is robust to its induced distribution shifts (Perdomo et al., 2020).

4.	 Shortcut learning occurs, e.g., if an AI-model seemingly classifies cows perfectly 
after training, but does so for the wrong reasons and hence fails on pictures of 
cows outside their usual environment. The AI-model has learned the unintended 
shortcut that ‘grass’ predicts ‘cow’, which fails outside the training distribution 
(Geirhos et al., 2020).

The concept of trustworthiness is even more tricky. An expert group set up by the 
European Commission requires trustworthy AI to be lawful, ethical, and robust 
(High-Level Expert Group on Artificial Intelligence, 2019). (For an overview of 
trustworthiness in AI, see Huang et al., 2020.) Here, we actually do not need more 

1 For an overview on adversarial attacks, see Serban et al. (2020) and for a formalization Dreossi et al. 
(2019).
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detail on the notion of trustworthiness beyond the fact that it plausibly implies robust-
ness. The reason is the following.

We are interested in the limitations of any reasonable precise notion of robustness 
and trustworthiness. So we will not presuppose a specific definition of these concepts. 
Instead, we will talk about them in a general language—that leaves open their exact 
nature—and are interested in what we can derive about robustness and trustworthi-
ness just from some general principles (cf. axiomatic method). This is similar to 
how we can meaningfully talk about the concept of belief and knowledge without 
having to define precisely what they are. Using the methods of epistemology, we 
can—despite this generality—still derive our no-go result.

More precisely, the summary of the paper is as follows. In Sect. 2, we illustrate 
the issue of robustness and trustworthiness with a standard guiding example, namely 
classifying images of handwritten digits—which, as we show, easily generalizes to 
other AI-models, including large language models. From that, we develop, in Sect. 3, 
a simple formal logic to reason about the robustness and trustworthiness of AI-mod-
els. In Sect. 4, we identify four prima facie desirable principles about robustness and 
trustworthiness. To already mention these principles, they informally read as follows.

	● Factivity: If the AI-model shows behavior φ robustly, it, in particular, shows be-
havior φ.

	● Robustness: Every trustworthy behavior is robust.
	● Countermodels: For every trustworthy behavior that is not shown on every input 

(i.e., is not trivial), there is some input on which the AI-model robustly does not 
show this behavior (so that input is a good counterexample, hence the name).

	● Moore-closure: For every trustworthy behavior φ, it is also trustworthy that the 
AI-model cannot be easily tricked into showing behavior φ if it currently does not 
(this has to do with the Moore sentence in epistemology, hence the name).

In Sect. 5, we prove that these principles imply triviality, via a novel interpretation 
of Fitch’s lemma. In Sect. 6, we discuss the consequences of the no-go result for the 
goal of explicating a viable notion of robustness. We distinguish between (1) a uni-
form notion of robustness (i.e., there is a fixed range of robustness that is guaranteed 
whenever the AI-model is applied) and (2) a non-uniform notion (i.e., every appli-
cation of the AI-model has some range of robustness), as well as (3) a probabilistic 
notion of robustness. The first satisfies all principles and hence trivializes, while the 
last two do not trivialize but hence need to give up some principle (indeed, the Coun-
termodels principle). We argue that the first is too strong and the second too weak 
a notion of robustness—with the third being a promising start to an intermediary 
notion. Section 7 explores the generality of the no-go result: we sketch how it also 
applies to the notion of explainability in AI as well as stability in philosophy. Section 
8 highlights further open questions suggested by the analogies between AI and epis-
temology, which are summarized in Fig. 1. In particular, it asks how the impossibility 
result—like many others—may plant seeds for positive results, e.g., by moving from 
a qualitative to a quantitative notion of robustness. We conclude in Sect. 9.

The broader theme of the paper—following recent ‘calls to action’ (Buckner, 
2019; 2023; Grote et al., 2024)—is to further reconnect philosophy and modern AI. 
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Using the example of robustness and trustworthiness, we show how this connection 
is fruitful in both directions: how well-studied epistemological and logical concepts 
can be applied to pressing issues in AI, and how this also sheds new light on these 
concepts via these novel applications.

2  A case study

As a simple but standard example, we consider an AI-model that classifies input 
images according to which digit they depict. At the end of this section, we show that 
our discussion actually applies much more generally also to large language models 
(like ChatGPT) and models for automated decision-making.

2.1  Classification behavior of the model

We want to talk about the classification behavior of this AI-model, in order to assess 
its robustness. So we want to make statements of the form ‘on input s, the AI-model 
shows behavior φ’. For example, given this picture s as input, the AI-model classifies 
it as depicting digit 2. Thus, we are broadly in the setting of formal verification for AI 
(Seshia et al., 2022; Huang et al., 2017; Albarghouthi, 2021): we want to see if the AI-
model (the system) in a state s (the environment) has property φ (the specification).

In suggestive logical notation, we write M, s ⊨ φ for ‘on input s, the AI-model M  
shows behavior φ’. We now want to describe the relation M, s ⊨ φ more precisely. 
Before we start, though, note that the statement ‘M, s ⊨ φ’ is one that we, as external 
observers, make about the behavior of the AI-model; it is not an internal statement 
of how the AI-model processes the input. In other words, M, s ⊨ φ concerns the 
externally observable behavior of the AI-model and does not say that the AI-model 
internally ‘believes’ that φ (after all, such anthropomorphizing language is very dif-
ficult to make precise).

To describe M, s ⊨ φ, we recursively consider the structure of φ, starting with 
the basic—or atomic—behavior of the AI-model, i.e., its classification behavior. We 
use the atomic sentences p0, . . . , p9 corresponding to the digits 0, . . . , 9, so we can 
describe the atomic behavior as:

Fig. 1  Analogies between AI 
and epistemology that will be 
developed in the paper
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	● M, s ⊨ pi iff the AI-model M  classifies input image s as depicting digit i.2

We can then naturally extend this to complex behavior φ: like ¬p2 ∧ p3. So 
M, s ⊨ ¬p2 ∧ p3 says that the AI-model does not classify input s to depict digit 2, 
but it does classify it to depict digit 3. Thus, we define

	● M, s ⊨ ¬φ iff M, s ̸⊨ φ.3
	● M, s ⊨ φ ∧ ψ iff M, s ⊨ φ and M, s ⊨ ψ.

Again note the externality: M, s ⊨ ¬φ means that the AI-model does not show behav-
ior φ. It does not mean that the AI-model classifies the input as non-φ (whatever that 
means).

Importantly, we also want to talk about the robustness of the AI-model. For now, 
let us take robustness as resilience to adversarial attacks (item 1 in our list). We write 
M, s ⊨ �pi to say that the AI-model M  robustly classifies input s as depicting digit  
i, i.e., it cannot be adversarially attacked on this classification. This means that on 
all similar enough inputs s′, the AI-model still classifies input s′ as depicting digit i. 
Thus, we define

	● M, s ⊨ �φ iff for all s′ that are relevantly similar to s, we have M, s′ |= φ.

Of course, ‘relevantly similar’ is not a precise notion and may depend on the context 
(the deployment situation, the safety-criticality, the type of adversarial attack, the 
model, etc.). However, a straightforward way—which is used in the verification lit-
erature—is to specify ‘relevantly similar’ as having a distance with respect to some 
fixed metric d on the inputs of less than some fixed threshold ϵ > 0. For concreteness, 
the input space X  is a subset of Rn where n is the number of pixels of the images, so 
a vector s ∈ Rn describes the color value (or grayscale) of each pixel in the image, 
and X  consists of those vectors that represent realistic images (rather than random 
pixel values). A standard metric then is given by the L2-norm, and we can set, say, 
ϵ := 0.1. Thus, ‘relevantly similar’ is a binary relation on inputs, and we get a Kripke 
semantics for �. (We will discuss issues and alternatives of this approach in Sect. 6.)

Finally, it will also be convenient to say that a property holds for all inputs:

	● M, s |= □□ φ if﻿f for all s′, we have M, s′ ⊨ φ.

Importantly, the relation M, s ⊨ φ connects the model-internals (the micro-level) 
with the model-externals (the macro-level). The left side of ‘⊨’ describes the AI-
model at the micro-level: it refers to the internal parameters of the model that are not 
visible to the end-user (e.g., the model architecture and the weight values, which, so 
far, we left implicit, but later also make the explicit) as well as the pixel-values of 
the input image. The right side of ‘⊨’ describes the AI-model at the macro-level: the 
behavior of the AI-model that can externally be observed by the end user, described 

2 Throughout, ‘iff’ abbreviates ‘if and only if’.
3 Here ‘M, s ̸⊨ φ’ is shorthand for ‘it is not the case that M, s ⊨ φ’.
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in a human-understandable language (e.g., the classification of the input in categories 
that are meaningful to us). Obviously, we hence want to better understand this rela-
tion: its logic, i.e., the laws governing this link between the model-internals and the 
model-externals, and how this connects to robustness and trustworthiness.

2.2  Robustness and trustworthiness of the AI-model

Now we have a simple language to talk about the behavior of the AI-model. With 
it, we have a way to express local robustness: M, s ⊨ �φ says that, for input s, the 
AI-model M  robustly shows behavior φ. But for deploying the AI-model in prac-
tice, we want a more global robustness: that the model still is locally robust also 
on new inputs that it has not seen during training.4 For example, to trust our AI-
model in its classifications of the digit 2, we want that whenever it classifies a real-
istic pixel image s ∈ X  as a digit 2 (i.e., M, s ⊨ p2), then it does so robustly (i.e., 
M, s ⊨ �p2). (So we do not require robustness on any arbitrary pixel image s ∈ Rn, 
which may be too strong, but only on the realistic ones that we consider as allowed 
input, i.e., the s ∈ X ⊆ Rn.) This means that for every allowed input s ∈ X , we have 
M, s ⊨ p2 → �p2. In logical terminology, a sentence ψ that is true at every state of a 
given model is said to be valid in that model—denoted M ⊨ ψ.5 Generally speaking, 
then, we say a behavior φ is (globally) robust for the AI-model M  if M ⊨ φ → �φ.

Moving to trustworthiness, when is a behavior φ of the AI-model trustworthy? For 
example, for φ = p2, we want that if the AI-model classifies an input s as depicting 
the digit 2, we can trust that the input really depicts a 2. As mentioned, however, it 
is very difficult both to theoretically characterize and practically identify the set T  
of trustworthy behavior. In general, for φ to be trustworthy this means that, if the 
AI-model shows behavior φ, we can trust that behavior, but what that amounts to 
exactly is difficult to specify. In the case of p2, this means trusting that the input 
really depicts a  2, but for more complex φ, this may be harder to say. Hence, as 
often done in mathematics, we will treat T  as a variable (for a set of sentences) and 
only make some plausible assumptions about it: for example, that trustworthiness 
implies robustness (i.e., if φ ∈ T , then φ is robust). We will formulate three further 
such plausible assumptions (Sect. 4), and then our no-go result shows that they entail 
triviality. Thus, we still gain knowledge about the trustworthy behaviors T, without 
explicitly defining it.

2.3  A special case of the impossibility result

To already get a flavor for such an impossibility, we present a simple but far-reaching 
special case of our no-go result.

4 See, e.g., Ruan et al. (2019) for a discussion of local vs. global robustness.
5 It is valid (simpliciter)—written ⊨ ψ—if it is valid in every model of the considered class of models. But 
here the model-relative notion is enough.
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It adds one more assumption, namely that the input space X ⊆ Rn of the AI-
model—i.e., the set of realistic images—is path-connected.6 Intuitively, this means 
that, for any two realistic images s and s′, one can continuously change the pixel val-
ues of s so as to arrive at the pixel values of s′ while only producing realistic images 
in the process. This has some intuitive plausibility, but we will not further elaborate 
on it, since our main no-go result will do away with this assumption.

Theorem 1  Assume the input space X  of the AI-model M  is a path-connected subset 
of Rn . Let d  be a metric on X , let ϵ > 0 , and assume that ‘relevantly similar’ in the 
interpretation of � is explicated as d(s, s′) < ϵ. If trustworthiness implies robust-
ness, then only trivial behavior is trustworthy: i.e., if φ ∈ T , then either φ is valid in 
M  or ¬φ is valid in M .7

Consequently, if we buy the plausible assumptions for our running example, then 
no interesting behavior—i.e., behavior that is present on some inputs but absent in 
others—can be trustworthy! In particular, if we only consider robustness—i.e., stipu-
late T := {φ : M ⊨ φ → �φ}—and define (local) robustness, as usual, via a metric 
and a threshold, then (global) robustness trivializes.

The response to the impossibility could be that (a) despite the initial plausibility of 
the assumptions, we have to give up some and (b) we also need to refine the explica-
tion of robustness (not simply use a metric and a threshold). We will discuss this in 
Sect. 6, after discussing the main no-go result. In particular, as an alternative to the 
above ‘uniform’ robustness that uses a fixed robustness range ϵ, we develop (1) a 
‘non-uniform’ robustness where ϵ can depend on the input and (2) a probabilistic ver-
sion that ‘smoothens’ the sharp cut-off provided by the robustness range.

As mentioned, Theorem 1 will be a consequence of our main result, but, in Appen-
dix A.1, we still give a direct proof. It is based on the following instructive idea. If 
the trustworthy behavior φ were not trivial, there is an input s where the model shows 
behavior φ and an input s′ where it does not. By connectedness, there is a sequence 
of inputs s = s1, s2, . . . , sn−1, sn = s′ such that adjacent inputs are at most ϵ-far 
apart. Since the model shows behavior φ on s1 and trustworthy behavior is robust, 
the model shows behavior φ robustly on s1. Hence it also shows this behavior on the 
relevantly similar input s2. But now we can repeat the reasoning and eventually con-
clude that also on sn the model shows behavior φ, contrary to assumption.

This proof is reminiscent of the anti-luminosity argument by Williamson (2000, 
ch. 4) in epistemology. It argues that many mental states, like feeling cold, are not 
luminous to us, i.e., we may be in that state without being in a position to know that 
we are. This argument considers the mental states s1, . . . , sn that we go through, in 
millisecond intervals, from feeling cold at dawn to feeling hot at noon. If feeling cold 
is luminous, then, in s1, we can know that we feel cold, so, for this knowledge to be 

6 A subset X of Rn is path-connected if, for any x, y ∈ X , there is a path in X from x to y (i.e., a continuous 
function p : [0, 1] → X  with p(0) = x and p(1) = y).

7 In fact, the theorem holds for any way of explicating relative similarity as a binary relation R (beyond 
the relation d(s, s′) < ϵ) to interpret �, as long as R is connected (i.e., for all s and s′ there are 
s = s0, s1, . . . , sn = s′ with siRsi+1).
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reliably based, we should also feel cold in the very similar state s2. Again, we con-
tinue this reasoning to get that also in snwe feel cold, contrary to assumption.

2.4  Generalizing to other AI-models

Finally, let us see how the framework developed so far also captures other forms of 
AI-models and robustness—not just adversarial attacks to a classifier.

Concerning other model architectures, let us consider two examples. First, if we 
are dealing with tabular data and automated decision-making, our inputs no longer 
are pixel images but feature vectors, and our AI-model outputs predictions based on 
the inputted features. Again, these outputs are described by atomic sentences: for 
example, M, s ⊨ ploan iff the AI-model M  outputs that the person whose features are 
s should get a loan. Second, consider a large language model (LLM) predicting next 
words. Then s is the prompt and the outputs again are described by atomic sentences: 
for example, M, s ⊨ pshining iff the language model M  continues input s =‘The sun 
is’ with the next word ‘shining’. As before, we can describe more complex behavior 
using the connectives ¬, ∧,�, ¬. Though, in describing robustness, ‘relevantly simi-
lar’ now means, e.g., being synonymous (for inputs to the LLM) or being identical 
outside of protected attributes like gender or disability status (for automated-decision 
making). (We come back to LLMs in the probabilistic explication of robustness in 
Sect. 6.3.)

Concerning other notions of robustness, we could, for example, capture natural 
distribution shifts (item 2 in our list) by interpreting ‘relevantly similar’ as: input s′ is 
a shifted version of input s (e.g., a picture of the same scene but with different light-
ing conditions). However, we get many more modeling options by noting that the 
states s need not be just inputs. They can include all kinds of choices in the machine 
learning pipeline—which is used by Freiesleben & Grote (2023) to define a general 
account of robustness. So, for example, a state s could, in addition to the input, con-
sist of (1) a description of the task conceptualization, (2) the dataset in raw and in 
prepared form, (3) the choice of model architecture, hyperparameters, and training 
algorithm, and (4) the data distribution on which the model is deployed. Thus, we 
could capture performativity 3, for example, by saying s is relevantly similar to s′ 
iff the deployment distribution of s′ is the one obtained from that of s after using the 
AI-model for a certain amount of time. As an intermediate example, one can consider 
states as pairs s = (w, x) consisting of a set of weights w of the AI-model and a 
given input x. Then robustness could require that the model not only shows the same 
behavior on similar inputs but also on similar weights. Thus, we would require that 
we get the same behavior had we trained the model sampling the training data in a 
different order.

In sum, we obtain a very general framework to describe robustness and trustwor-
thiness of AI-models. We now turn to analyzing this framework more formally.

1 3

   22   Page 8 of 37



Synthese          (2026) 207:22 

3  A simple logic of robustness

Generalizing from the preceding examples, we have a language built from atomic 
sentences using the operators ¬, ∧,�, □□ . Intuitively, the sentences φ describe exter-
nally observable behavior in a human-understandable language. The sentences are 
true or false at the internal states s of the AI-model M—where a state at least includes 
the input to the AI-model but can also include, e.g., the weights of the AI-model. We 
write M, s ⊨ φ iff, in state s, the model M  shows behavior φ. So the relation ⊨ links 
the internal states to the external behavior. We write M ⊨ φ (and say φ is valid in M) 
if behavior φ is shown in every state, i.e., φ is a behavioral law of M. However, there 
is no agreed-upon formal explication of ⊨. In particular, we do not yet have a formal 
semantics for the robustness operator �.

Thus, we are in a similar situation that modal logicians were in before the advent 
of Kripke semantics (and other semantics, like the topological semantics). They did 
not have a formal semantics for the necessity operator �, which describes when a 
sentence φ is necessarily true (at a possible world s). Instead, they looked at the 
logic—or the governing laws—of sentences involving the necessity operator. They 
axiomatically described the laws via a derivability relation ⊢, where ⊢ φ means that 
φ is logically provable—or ‘derivable’—from the chosen axioms.8 The relation ⊢ φ 
is meant to track the still to be formally defined semantic validity ⊨ φ (truth at every 
possible world in every model). Although purely syntactic, ⊢ still captures much of 
the (unknown) semantics and it still can be philosophically assessed by discussing 
the plausibility of its axioms.

Hence we now also play the logicians’ trick: We do not define the semantic rela-
tion M, s ⊨ φ explicitly, but rather make assumptions about the behavioral laws. So 
a derivability relation ⊢ then describes those behavioral laws that we can derive from 
these assumptions. Just like in modal logic, we also distinguish two types of assump-
tions: the logical axioms (which we describe below) and the ‘contentful’ assumptions 
specifically about robustness and trustworthiness (which we describe in Sect. 4).9 
Thus, every AI-model with a choice of formal semantics for � (e.g., Kripke seman-
tics) gives rise to a derivability relation ⊢, which describes the behavioral laws. The 
logical axioms governing the derivability relation describe a minimal logic of robust-
ness, and the contentful assumptions strengthen this logic. Even if the behavioral 
laws do not specify whether a particular behavior φ is shown in a particular state of 
the AI-model, they still describe many important aspects of the AI-model. In particu-
lar, to say that the AI-model is robust concerning its classification of the digit 2 is to 
say that ⊢ p2 → �p2.

In the remainder of this section, we formally define our notion of language and the 
logical axioms on the behavioral laws, i.e., the derivability relation. (For a reference 
on modal logic, see Blackburn et al., 2001.)

8 Typically, ⊢ is just a unary relation because φ ⊢ ψ (i.e., ψ is derivable from φ) is equivalent to ⊢ φ → ψ
.

9 In modal logic, the logical axioms include (at least for normal modal logics), e.g., the K-axiom 
�(φ → ψ) → (�φ → �ψ); while the ‘contentful’ axioms, that are specific to different interpretation 
of �, are, e.g., the T -axiom �φ → φ, which holds when � is interpreted as knowledge but not if it is 
interpreted as belief.
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As already indicated, the language is defined as follows. We choose a nonempty 
(finite or countably infinite) set of atomic sentences At. We recursively build complex 
sentences: if φ and ψ are sentences, so are ¬φ, φ ∧ ψ,�φ, □□ φ. We write L for the set 
of all sentences. We define the usual abbreviations (for some p ∈ At): 

	

φ ∨ ψ := ¬(¬φ ∧ ¬ψ) ⊥ := p ∧ ¬p

φ → ψ := ¬φ ∨ ψ �φ := ¬�¬φ

φ ↔ ψ := (φ → ψ) ∧ (ψ → φ) �� φ := ¬□□ ¬φ.

We use the variables p, q, r, . . . to range over atomic sentences and φ, ψ, χ, . . . to 
range over sentences. For our purposes, a propositional language is enough: We do 
not need further syntactic structure on the atomic properties like first-order quantifi-
cation. The language L is a well-known bimodal language (Shehtman, 1999).

A derivability relation (or logic) ⊢ is a set of sentences (i.e., a subset of L) satisfy-
ing the axioms A1–A4 below. Here we write ⊢ φ iff sentence φ is in the set ⊢.

A1	� If φ is a truth-functional tautology,10 then ⊢ φ� (classical logic)
If ⊢ φ and ⊢ φ → ψ, then ⊢ ψ� (modus ponens)

A2	 ⊢ �(φ ∧ ψ) → (�φ ∧ �ψ)� (distributivity for �)
If ⊢ φ ↔ ψ, then ⊢ �φ ↔ �ψ� (congruence for �)

A3	 If ⊢ φ, then ⊢ □□ φ� (necessitation for □□ )
If ⊢ φ → ψ, then ⊢ �� φ → �� ψ� (semi-congruence for �� )

A4	 ̸⊢ ⊥� (consistency)

In words, axiom A1 says that we follow the scientific standard of basing our rea-
soning on classical logic.11 For example, if φ is a tautological behavior, it is shown 
at every state in every model. (After deriving the no-go result, we discuss in Sect. 
8—as a way out—the idea of weakening the underlying logic to some non-classical 
logic; but, for now, we go with the standard choice of logic.) Axiom A2 says that � 
distributes over ∧, and that provably equivalent sentences can be substituted inside 
a �-context. Axiom A3 says that □□  satisfies necessitation (if φ is provable, so is 
□□ φ) and that also the ‘implication-version’ of the substitution of provably equiva-
lents holds. Finally, axiom A4 says that the logic is consistent. Note that a typical 
assumption for modal operators is that they are normal, i.e., validate the K-axiom 
(�(φ → ψ) → (�φ → �ψ)) and necessitation. For �, this implies the axiom A2, 
and for □□ , this implies axiom A3.

10 More precisely, there is a sentence χ with atomic sentences p1, . . . , pn and there are sentences 
ψ1, . . . , ψn such that φ is the result of replacing each occurrence of pi with ψi (for all i = 1, . . . , n) and 
χ only contains Boolean connectives (i.e., ¬, ∧) and is a classical tautology (i.e., true under any classical 
valuation).
11 Here, we do not assume uniform substitution because, if ⊢ describes the sentences that are valid in a 
model with a fixed interpretation of the atoms, we might have, e.g., ⊢ p → �p but not ⊢ q → �q, so we 
cannot substitute q for p (cf. Williamson, 1999, p. 129).
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4  Principles about robustness and trustworthiness

To recall, given any AI-model (or a class thereof) and interpretation of robustness, we 
denote the behavioral laws φ, i.e., those behaviors that are always shown, as ⊢ φ. In 
the preceding section, we collected some logical axioms about ⊢. In this section, we 
collect some further ‘contentful’ principles about robustness and trustworthiness. We 
write T  for the set of behaviors on which the AI-model can be trusted, but since we 
do not know exactly which behaviors belong to T , we only formulate assumptions 
about T  that seem plausible regardless of what its elements are.

4.1  Factivity

The first principle does not yet involve T  but simply requires that robustness is factive: 
If the AI-model shows behavior φ robustly, then it in particular shows behavior φ.

P1	 ∀φ ∈ L : ⊢ �φ → φ� (Factivity)

On the intuitive reading of � as ‘for all relevantly similar states’, this axiom is highly 
plausible: whatever ‘relevantly similar’ means exactly, a state arguably should be 
relevantly similar to itself, so if it satisfies �φ it also satisfies φ.12

So what could be objections to Factivity? In Sect. 6.3, we will consider one expli-
cation of robustness which fails Factivity. This explication reads �φ as ‘with high 
probability also similar states show behavior φ’. This explication fails Factivity since 
high probability does not imply truth. However, even then, we will argue that the fol-
lowing weaker form of Factivity still is very plausible:

P1′	 ∀φ ∈ T : ⊢ ��φ → �φ and ⊢ �φ → �φ  � (Weak-factivity)

Factivity indeed implies Weak-factivity: The quantification is now only over sen-
tences in T; the first conjunct is Factivity but restricted to sentences with a leading 
diamond; and the second conjunct is implied by Factivity, since Factivity implies 
⊢ (�φ → φ) ∧ (φ → �φ).

Our impossibility result will only need Weak-factivity and not full Factivity. So 
the upshot is that, even if, for most explications of robustness, Factivity is valid, our 
impossibility also applies to explications that only satisfy Weak-factivity, like the 
probabilistic explication.

4.2  Robustness

We have already encountered the next principle: that trustworthiness should imply 
robustness—as the expert group requires (High-Level Expert Group on Artificial 
Intelligence, 2019).

P2	 ∀φ ∈ T : ⊢ φ → �φ� (Robustness)

12 Indeed, the axiom �φ → φ is known as the T -axiom in modal logic and is validated by Kripke frames 
whose accessibility relation is reflexive.
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In words: If the AI-model shows trustworthy behavior on an input (or, more generally, 
in a state), then it shows this behavior robustly, i.e., also on relevantly similar input (or 
states). In particular, to trust the AI-model in its behavior, it should not be adversari-
ally attackable. Interestingly, related ideas are discussed in epistemology. To to put 
this principle into philosophical perspective, we sketch this analogy in the remainder 
of this subsection. See Hornischer (2021, ch. 8), Vandenburgh (2023), and Grote et al. 
(2024) for such connections between knowledge and trustworthiness.13

The basic idea of the analogy is that behavior is to trustworthy behavior what 
belief is to knowledge. This may well be an analogy and not a similarity (Gentner, 
1983): i.e., behavior may be dissimilar to belief (if one does not anthropomorphize), 
but the relations between behavior and trustworthy behavior on the one hand might 
be similar to the relations between belief and knowledge on the other hand. If the 
AI-model classifies a given image as depicting the digit 2, then whatever it takes 
to render this behavior trustworthy is similar to whatever it takes to turn a belief 
into knowledge. Let us consider two examples of how this idea may help to transfer 
insights from epistemology to AI, specifically concerning robustness. The focus here 
is on illustrating such a transfer, not on working it out in detail.

First, the analogy suggests that principle P2 corresponds to the so-called safety condi-
tion for knowledge. This condition identifies a feature of knowledge that mere belief need 
not have. It says that knowledge requires safety in the sense that, if we know that p is the 
case, we still would not be wrong in similar cases.14 This is illustrated by Russell’s famous 
stopped clock (Russell, 1948, 170f.): We look at a clock with the intention of coming 
to know what time it is. Incidentally, at this very moment, the clock shows the right 
time, but, unbeknownst to us, it actually has stopped exactly 24 hours ago. Intuitively, we 
would not consider the true belief about the current time that we obtained in this way to 
be knowledge. And, indeed, in the very similar case where we had looked at the clock 
just one minute earlier, we would have been wrong, so the safety condition is violated.15 
There is much discussion on how to formulate the safety condition precisely, but it usually 
runs along the following lines: If a knows p based on a method m in situation s then, in all 
situations s′ similar to s, if a believes p in s′ based on m, then p is true at s′. So, if safety 
needs to be added to belief to get to knowledge, how is this relation transferred—via the 
analogy—to behavior of AI-models? Plausibly, robustness needs to be added to behavior 
(among others) to get to trustworthy behavior—just like principle P2 requires. Surely this 
needs a more thorough discussion, but it suggests a potentially fruitful application of the 
extensive philosophical discussion of safety conditions to trustworthiness in AI.

Second, the analogy suggests that trustworthiness is as elusive a concept as knowl-
edge. Just as it is notoriously hard (if at all possible) to specify what else is required to 
turn (justified and true) belief into knowledge, it plausibly is equally hard to specify what 
else is required to turn (well-trained and correct) behavior of an AI-model into a trustwor-

13 Whether such modal conditions for knowledge are compatible with best practices in statistics is dis-
cussed, e.g., by Mayo-Wilson (2018) and Fletcher & Mayo-Wilson (2024), which we will pick up again 
in Sect. 8.
14 See, e.g., Williamson (2000), Sosa (1999) and, for an overview, Ichikawa & Steup (2018) and Rabinow-
itz (2024). For other ‘stability-requiring’ notions in epistemology, see Rott (2004).
15 Closely related to the safety condition is the idea that knowledge should not involve epistemic luck: in 
the example, we were just lucky that our belief turned out to be correct (Pritchard, 2005).
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thy behavior. In other words, the analogy casts doubt on the prospect of a fully satisfying 
conceptual analysis of trustworthiness into crisp and operationalizable sufficient and nec-
essary conditions. To make this point, the analogical counterpart to the infamous Gettier 
examples (which obstruct an analysis of knowledge) may be adversarial attacks. Con-
sider a deep neural network that correctly classifies a camera input as containing a stop 
sign but that can be adversarially attacked. Then this classification behavior not only is 
correct (the analog of being true) but it also is well-trained (the analog of justified), since 
the classification is produced after a long training process. Yet, the classification behavior 
of the AI-model is not trustworthy, since it can be adversarially attacked. So the AI-model 
has the analog of justified true belief but not the analog of knowledge—just like a Gettier 
case. Again, this needs further discussion. For example, the above kind of justification is 
‘internalistic’, and an attempt to explain away Gettier examples is to demand that justifi-
cation should instead be externalistic (Ichikawa & Steup, 2018). It would be interesting 
to consider what the analogical counterpart is for AI.

4.3  Countermodels

The next principle is a minimal falsifiability requirement:

P3	 ∀φ ∈ T : ⊢ ¬φ → �� �¬φ� (Countermodels)

In words: For any trustworthy behavior φ, if, on some input (or state), the AI-model 
does not show behavior φ, then there also should be some input (or state) on which it 
robustly does not show behavior φ. This input (or state) thus is a good countermodel 
to showing behavior φ—hence the name.

For example, it may be that the AI-model does not classify an input s as depicting the 
digit 7, because that input is on the decision boundary between a 1 and a 7. By slightly 
enhancing the characteristics of a 7, we get a similar input s′ which the AI-model classi-
fies as 7. So it is not the case that the AI-model robustly does not show behavior p7. How-
ever, all that the principle requires is that if p7 is trustworthy, then there is some input on 
which the AI-model robustly does not show behavior p7. This input may be, for example, 
a clearly written 2 or even a completely black image. The AI-model will robustly not 
classify them as a 7—otherwise p7 arguably was not trustworthy in the first place.

The bigger the state space, the easier it is to satisfy principle P3. For example, let us 
consider states as pairs s = (M, x) where M  is an AI-model that can take x as input. 
Then, to satisfy principle P3, we only need to find some model that robustly does not 
show behavior φ on some input. Conversely, if the conclusion of the no-go result is that 
this principle must be violated, then it does not just say that the present model cannot 
robustly show some behavior, but, in fact, no model can (cf., e.g., Bastounis et al., 2024).

4.4  Moore-closure

The last principle requires a certain closure property of the trustworthy behaviors.

P4	 ∀φ ∈ T∃ψ ∈ T : ⊢ ψ ↔ φ ∨ �¬φ� (Moore-closure)
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In words: If φ is a trustworthy behavior, so is φ ∨ �¬φ, up to logical equivalence. 
Before discussing its plausibility, let us explain the name.

Moore sentences are known from epistemology (e.g., van Benthem, 2004). They 
are sentences of the form ‘p, but I do not know it’ or, as a formula, p ∧ ¬�p. They 
are important because they can be true but one can never know them: otherwise one 
would know p and (know that) one does not know p. (They play an important role in 
Fitch’s paradox, as we will see in Sect. 5). Instead of knowledge, we interpret � here 
as robustness, but the formulas are unchanged: Given a sentence φ, we define the 
Moore sentence and the dual Moore sentence of φ, respectively, as 

	 Mφ := φ ∧ ¬�φ

M

φ := φ ∨ �¬φ,

where 

M

 is dual to M in the usual sense that 

M

φ is equivalent to ¬M¬φ.
Here we only consider 

M

. Intuitively, M, s ⊨ M

φ says that, on input (or state) s, 
either the AI-model M  already shows behavior φ or else it robustly does not show 
behavior φ. In other words, M, s ⊨ M

φ means that, on input (or state) s, the AI-model 
cannot be φ-tricked: it cannot be tricked into showing behavior φ (if it currently 
does not show this behavior) by providing a very similar input (or state). Thus, 

M

φ 
describes behavior of the AI-model that we naturally are interested in when assessing 
the trustworthiness of the model: after all, if the model can be tricked into classifying 
an input as, say, depicting digit 2, it intuitively did not have high (objective) certainty 
when it did not classify the input as depicting digit 2.16

Now, the principle demands: if behavior φ is trustworthy, so is 
M

φ, i.e., it is 
trustworthy that the AI-model cannot be φ-tricked. This seems plausible: As just 
discussed, for behavior to be trustworthy, we should have some certainty, reason, 
or evidence that the AI-model cannot easily be tricked into it, and this justification 
hence also renders 

M

φ trustworthy. We also show formally that this principle is satis-
fied on natural explications of robustness (Sect. 6).

5  The no-go result

Now we can state the no-go result (Sect. 5.1) and discuss the idea of the proof, which 
utilizes Fitch’s lemma (Sect. 5.2). The formal proof is in Appendix A.2.

5.1  Statement of the result

Let us summarize the framework that we now have in place to state the no-go result. 
We have a language L to describe the externally observable behavior of AI-models, 
including their robustness. This behavior is realized in the internal states of the AI-
models. The derivability relation ⊢ describes the behavioral laws: those behaviors 
that are shown in every state in the considered AI-models. The set T  contains those 
sentence describing trustworthy behavior. We neither know ⊢ nor T  exactly, so we 

16 For an overview of uncertainty quantification in deep learning, see, e.g., Abdar et al. (2021), Hüllermeier 
& Waegeman (2021) and for a connection with robustness Gustafsson et al. (2020).
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have collected four prima facie plausible principles about them, in addition to the 
logical axioms A1–A4.

The no-go result now provides new insights about robustness and trustworthiness, 
as encoded in ⊢ and T: namely, these four principles imply triviality.

Theorem 2  For any derivability relation ⊢ (describing the behavioral laws) and set 
of sentences T  (describing the trustworthy behavior), the principles P1–P4 imply 
triviality, i.e., ∀φ ∈ T : ⊢ �φ ↔ �φ. This still holds when replacing P1 by P1′.

Thus, whatever the behavioral laws are (⊢) and whatever behavior is trustworthy 
(T), at least one of the prima facie plausible principles has to go, unless the trust-
worthy behavior is trivial. Here triviality means that, for any state of a considered 
AI-model, as soon as it shows the trustworthy behavior φ on some similar state, it 
actually shows this behavior on all similar states. Intuitively, then, there are no deci-
sion boundaries for trustworthy behavior φ, i.e., there are no states in the considered 
AI-models with close-by φ-states on one side and close-by ¬φ-states on the other 
side. It is in this sense that trustworthy behavior is trivial. Thus, Theorem 2 is a modal 
collapse argument: trustworthy sentences are modally trivial (cf. the modal collapse 
argument of Quine, 1960, 191f.).

In Sect. 6, we will discuss the consequences of the no-go result and whether trivi-
ality should be accepted or some of the principles should be given up. But first we 
discuss, in the next subsection, the idea of the proof.

5.2  Proof idea: reinterpretation of Fitch’s paradox

The proof relies on a reinterpretation of Fitch’s paradox in terms of robustness. Here 
we (1) recap Fitch’s paradox, (2) state our reinterpretation, and (3) describe the idea 
of the proof. The formal proof is in Sect. A.2.

(1). Fitch’s paradox is also known as the Church–Fitch paradox or the para-
dox of knowability. Nowadays, it is stated as follows: If all truths can be known 
(∀p : p → �Kp), then all truths are already known (∀p : p → Kp). The contraposi-
tive implication was first published by Fitch (1963) acknowledging an anonymous 
referee who, much later, was discovered to be Alonzo Church. (See  Brogaard & 
Salerno, 2019 for a brief history.) Even though Fitch worked in the context of value 
concepts, the implication is mostly interpreted in the above form as an objection to 
verificationalism, i.e., the view that all truths are knowable (Brogaard & Salerno, 
2019).

In more precise words, the formal implication 

	 ∀p : p → �Kp ⇒ ∀p : p → Kp,

which is also called Fitch’s lemma, can be established with fairly minimal proof-
theoretic assumptions on the modal operators � and K. It gains philosophical mean-
ing by interpreting the quantifier as ranging over all declarative statements and the 
modal operators as describing metaphysical possibility and knowledge, respectively.
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(2). Here we wish to provide another interpretation in terms of robustness: First, 
we make explicit the set T  of sentences that we quantify over. In the original version, 
this was the set of all (declarative) sentences. Thus, we can account for the worry 
that not all sentences are subject to verificationalism but only those of a certain logi-
cal form (cf. Dummett, 2001). Second, and most importantly, we suggest a different 
interpretation of the modal operators. We (re-) interpret the metaphysical possibility 
operator � as the global possibility operator ��  and we (re-) interpret the knowledge 
operator K as the robustness operator �.

For example, while, in the original interpretation, the formula ∀p : p → �Kp 
expressed the knowability principle, in our reinterpretation, the formula ∀p : p → �� �p 
expresses the idea that all behavior can be robust. Here, we will not assume this prin-
ciple in full generality but only in the restricted form of principle P3: i.e., we do not 
assume it for all p, but only for negations of trustworthy behaviors, i.e., sentences of 
the form ¬φ with φ ∈ T .

(3). Now, the idea of the proof is as follows. Given a trustworthy behavior φ ∈ T , 
we need to show ⊢ �φ ↔ �φ. By the Robustness principle, we have ⊢ φ → �φ. 
By Factivity, we have ⊢ �φ → φ. And an easy argument shows that Factivity also 
implies φ → �φ (apply the contrapositive version of Factivity to ¬φ). So it remains 
to show ⊢ �φ → φ. Toward a contradiction, assume this fails. So there must be 
some state s with s ⊨ �φ but s ̸⊨ φ, i.e., s |= ¬�¬φ ∧ ¬φ. Equivalently, s ⊨ ¬ψ, 
where ψ := φ ∨ �¬φ. But by the Moore-closure principle, we have ψ ∈ T  (up to 
equivalence). So the Countermodels principle applies and we get ⊢ ¬ψ → �� �¬ψ. 
Since s ⊨ ¬ψ, we also have s ⊨ �� �¬ψ. We now argue that this cannot be. Indeed, 
it implies that there is a (potentially different) state s′ with s′ ⊨ �¬ψ. Recall that 
¬ψ is equivalent to ¬φ ∧ ¬�¬φ. Further, robustly showing behavior φ1 ∧ φ2 
implies robustly showing behavior φ1 and robustly showing behavior φ2. Hence 
s′ robustly shows behavior ¬φ and s′ robustly shows behavior ¬�¬φ. By Factiv-
ity, s′ also shows behavior ¬�¬φ. Hence, writing χ := �¬φ, we have s′ ⊨ χ and 
s′ ⊨ ¬χ, which is the desired contradiction. As mentioned, the fully formal proof 
is in Appendix A.2, which also shows why in this proof we actually only need 
Weak-factivity.

6  Consequences of the no-go result

The no-go result provides a very general limitation for robustness and its interplay 
with trustworthiness: no matter how we understand these concepts, we can never 
satisfy all the principles from Sect. 4 without trivializing. As with any no-go result, 
this prompts the question: do we need to bite the bullet of triviality or should we give 
up one of the initially plausible assumptions? In particular, what does this mean for 
the goal of formalizing the concepts of robustness and trustworthiness, so that they 
can be verified for AI-models?

We start this discussion in Sect. 6.1 by considering the concrete explication of 
robustness via a metric and a threshold, as in the case study from Sect. 2. We find that 
all principles are satisfied (thus corroborating the principles), so we need to accept the 
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triviality in this case (and we also discuss the severity of the triviality). This is exactly 
the special case that we saw as Theorem 1.

Looking for ways to avoid the triviality, we are lead to an important conceptual 
distinction in the explication of robustness, which we explore in Sect. 6.2. The just 
mentioned explication is uniform in the sense that it has a fixed robustness range ϵ 
that should work for all states of the AI-model. But we can also consider non-uni-
form explications where we only require for each state some robustness range. This 
distinction between uniform and non-uniform robustness matches exactly the two 
most common semantics for modal logic: Kripke semantics and topological seman-
tics, respectively. We find that, on this weaker non-uniform robustness, we can avoid 
triviality. Hence, by the no-go result, we also have to give up at least one principle: 
indeed, we show that the Countermodels principle is violated.

In Sect. 6.3, we explore a third, probabilistic explication of robustness, which is 
a ‘smoothened’ version of uniform robustness and which also can avoid triviality.

We discuss the three explications of robustness in Sect. 6.4.

6.1  Uniform robustness (Kripke semantics)

As seen in Sect. 2, the most straightforward formalization of robustness is via a met-
ric d on the input space X  of the AI-model M  and a threshold ϵ. Thus,

	● M, s ⊨ p iff the AI-model shows basic behavior p on input s (classifying it as hav-
ing label p, next word prediction p, etc.)

	● M, s ⊨ ¬φ iff M, s ̸⊨ φ
	● M, s ⊨ φ ∧ ψ iff M, s ⊨ φ and M, s ⊨ ψ
	● M, s ⊨ �φ iff, for all s′, if d(s, s′) < ϵ, then M, s′ ⊨ φ
	● M, s ⊨ □□ φ iff, for all s′, M, s′ ⊨ φ.

With this explication, we have a concrete setting to discuss the consequences of the 
no-go result. For the purpose of this discussion, let us stipulate trustworthy behav-
ior to be robust behavior, i.e., T := {φ : M ⊨ φ → �φ}. In other words, for now, 
we put to the side other conditions for trustworthiness than robustness. With these 
choices, we can ask which principles are satisfied.

It is not difficult to show, that, in this setting, not only are all logical axioms sat-
isfied (defining ⊢ φ by M ⊨ φ) but also all the principles P1–P4—the details are 
in Appendix A.3. This corroborates the principles: they come out true on the most 
straightforward explication of robustness. However, the flip side is that the no-go 
result implies triviality: for all φ ∈ T , we have M ⊨ �φ ↔ �φ.

Here is what triviality means in this setting. We can partition the input space X into 
equivalence classes, where two inputs s and s′ are considered equivalent iff there is a 
sequence of inputs s1, . . . , sn ∈ X  such that s = s1, s′ = sn and d(si, si+1) < ϵ for 
all 1 ≤ i < n. So we cluster together inputs that are connected by similarity. Trivi-
ality then means that, for trustworthy behavior φ ∈ T  and any given cluster, either 
the AI-model shows behavior φ on all inputs of the cluster or the AI-model does not 
show behavior φ on all inputs of the cluster. In particular, this entails Theorem 1 as 
a special case: if we additionally assume the input space to be path-connected, then 
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the entire input space is one single cluster, so trustworthy behavior either is shown on 
every input or on no input.

But is triviality really a bad thing? Arguably yes: The severity comes from the fact 
that the triviality applies to all AI-systems. Sure, there might be some AI-systems 
where the triviality is not an issue and, in fact, welcome. For example, take a binary 
classifier that is well-trained on an input space (aka data manifold) in which the posi-
tive class and the negative class are nicely separated with respect to the metric that 
we use to explicate robustness. So the positive class and the negative class form two 
clusters in the input space and the AI-model has a trivial classification behavior in 
each cluster. The problem is that there also are binary classification tasks where such 
a clean separation is impossible. In the input space, there might be many data points 
that have, within ϵ-distance, both positively and negatively labeled data points. In 
these cases, the classification behavior can never be robust, because, by the no-go 
result, it would have to be trivial on a cluster.

This prompts us to look for ways to avoid triviality, so we should weaken our 
notion of robustness—as it then becomes easier to obtain nontrivial robust behavior. 
The problem with the preceding explication of robustness that has lead to triviality is 
that we insist on a robustness range of some fixed ϵ > 0, even when we are close to 
the decision boundary. So an obvious weakening is to conceive of robustness as more 
gradual: when we are close to the decision boundary, we expect a smaller robustness 
range than when we are far away. Thus, while there might not be a uniform robust-
ness range ϵ that works for all inputs s (∃∀), we can at least non-uniformly require 
that for every input s there is some robustness range ϵ (∀∃). This move also occurs 
in margin for error principles in epistemology and vagueness (see, e.g., Williamson, 
1994, sec. 8.3 or Égré, 2015, sec. 2).

Consequently, we only fix a metric d upfront and change the clause for robustness 
to:

(∗)	 M, s ⊨ �φ iff there is ϵ > 0 such that, for all s′, if d(s, s′) < ϵ, then 
M, s′ ⊨ φ.

Thus, on the uniform explication of robustness, ‘relevantly similar’ is an absolute 
and all-or-nothing matter: either two states s and s′ are similar, i.e., d(s, s′) < ϵ, or 
they are not. But on the non-uniform explication, it is a relative and gradual matter: 
two states s and s′ are similar to degree ϵ if d(s, s′) < ϵ; and non-uniform robustness 
requires robustness for some degree of similarity.17

6.2  Non-uniform robustness (topological semantics)

We saw an important conceptual distinction for robustness: uniform robustness 
requires one fixed robustness range ϵ > 0 that works for all states of the AI-model, 

17 Since the uniform robustness parameter ϵ acts as a quantitative measure of the trustworthiness of the 
AI-model, we also may want a weakened substitute. Following Ruan et al. (2019), we can take this to be 
the expected value, across the different inputs s, for the maximal robustness range ϵ that we can choose 
for the input s.
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while non-uniform robustness only requires for each state some robustness range 
ϵ > 0. Uniform robustness satisfies all principles but hence, by the no-go result, trivi-
alizes. We will now see that the weaker non-uniform robustness indeed can deliver 
nontrivial behavior that still is robust in that weaker, non-uniform sense.

Before we get there, we first observe that non-uniform robustness has a crucial 
advantage over uniform robustness: not only does it quantify away the threshold 
ϵ, it also is independent of the metric (provided the metric comes from a norm, as 
described shortly). This is important because, in practice, various metrics are used 
(e.g., L0, L1, L2, or Wasserstein), and it generally is regarded as an open problem 
which is the right notion of distance (see, e.g., Freiesleben, 2022, sec. 5.2, for discus-
sion). Typically, the metrics on the input space X ⊆ Rn are given by a norm, and it is 
a basic mathematical fact that all these norms are equivalent in the sense of determin-
ing the same topology, namely the usual Euclidean topology on Rn. Hence clause (∗) 
for non-uniform robustness can equivalently be expressed as:

(∗∗)	 M, s ⊨ �φ iff there is an open set U ⊆ X  with s ∈ U  such that, for all 
s′ ∈ U , we have M, s′ ⊨ φ.

This is exactly the topological semantics for modal logic  (e.g. van Benthem & 
Bezhanishvili, 2007).

Now here is how we can avoid triviality on this explication. Let us again stipu-
late, for the purpose of this discussion, trustworthy behavior to be robust behavior, 
i.e., T := {φ : M ⊨ φ → �φ}. Now consider an open set U ⊆ X  that is not closed 
(e.g., an open interval (a, b) ⊆ R in the case of dimension n = 1). We can regard U  
as a behavior p by defining: M, s ⊨ p iff s ∈ U . Then p is a nontrivial trustworthy 
behavior, i.e., p ∈ T  and M ̸|= �p ↔ �p (see Appendix A.4 for a proof). The com-
mon topological spaces have plenty of open set that are not closed, so we get plenty 
of robust behaviors that are not trivial, as desired.

Since non-uniform robustness is built on the topological semantics, it satis-
fies all the logical axioms, so our no-go results applies. Since we avoid triviality, 
at least one of the principles  P1–P4 must be violated. Which one? It is not diffi-
cult to show that Factivity, Robustness, and Moore-closure are satisfied (again, see 
Appendix A.4). So the Countermodels principle must fail: there must be ψ ∈ T  such 
that M ̸⊨ ¬ψ → �� �¬ψ. In fact, ψ can be chosen as 

M

φ for any nontrivial behav-
ior φ ∈ T . Recall that 

M

φ says that the AI-model cannot be φ-tricked. So we have 
(proof in Appendix A.4):

For every nontrivial robust behavior φ (open and not closed), the AI-model can 
be φ-tricked (

M

φ is false on some inputs) but for generic inputs it cannot (

M

φ 
is generically true, i.e., an open and dense set).

Indeed, on the non-uniform explication of robustness, there is no reason to expect 
the Countermodels principle: Violating 

M

φ amounts to being on the decision bound-
ary for φ, which (literally) is the topological boundary of the set of states satisfy-
ing φ (proof in Appendix A.4). If φ is nontrivial robust (open and not closed), this 
boundary is nonempty, so 

M

φ can be violated. However, 

M

φ can never be robustly 
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violated, since it would require a nonempty open subset of the boundary of φ, which 
is topologically impossible since φ is open.18

In sum, on the non-uniform explication of robustness, we can have nontrivial 
robust behavior and we should give up the Countermodel principle. In that sense, 
non-uniform robustness fares better than the too strong uniform robustness, but on 
the other hand one might argue that non-uniform robustness is too weak a notion of 
robustness, which we discuss for the remained of this subsection.

The argument goes as follows. We said that norm-based metrics are usually used 
to define distances in connection with robustness, and all these metrics induce the 
Euclidean topology on the input space. So this is the natural topology on the input 
space when discussing non-uniform robustness. But this renders too many AI-models 
robust: Consider a binary classifier M  that takes pixel images s ∈ Rn and outputs ‘yes’ 
or ‘no’ depending on whether the image depicts a stop sign. Say this classifier has a 
typical neural network architecture; so it realizes a function N : Rn → [0, 1] which has 
been trained to output the probability N(s) with which it takes the image s to depict 
a stop sign, and the classifier outputs ‘yes’ once this probability exceeds, say 0.9. So 
[[pyes]] = {s ∈ Rn : M, s ⊨ pyes} is the set of pictures the classifier takes to depict a 
stop sign. Since typical neural networks are continuous functions with respect to the 
Euclidean topology, [[pyes]] = N−1((0.9, 1]) is open. But this now means that, accord-
ing to non-uniform robustness, any such classifier automatically is robust in classifying 
stop signs, regardless of how it was trained! So non-uniform robustness does not track 
the intuitive notion of robustness according to which many such classifiers are not robust.

What to make of this argument? Initially, one might take issue with the fact that 
the robustness range ϵ can get arbitrarily small. After all, a robustness range below 
computer precision is practically useless. So one might want to require a minimal 
robustness range. However, then one is back with uniform robustness and its prob-
lems resurface. As another option, then, one might consider other topologies than the 
Euclidean one, giving up the idea that the topology comes from some norm-based 
metric. After all, the appropriate topology that captures similarity between images 
according to human cognition may be different from the ‘low-level’ Euclidean topol-
ogy on the pixel values. Presumably, not every open set of the latter topology is open 
in the former topology, so the preceding argument that non-uniform robustness is too 
weak does not go through anymore.19 Yet further options are to use other formalisms 
to explicate robustness. Among the broadly topological options are neighborhood 
semantics (Pacuit, 2017) or the d-semantics (van Benthem & Bezhanishvili, 2007, 
sec.  3.1). One could also consider the robustness analysis of Moggi et al. (2018, 
thm. A.2) using domain theory (which is used in Zhou et al., 2023).

Yet another option is to consider a conceptually different explication of robustness 
in terms of probability, which we explore next.

18 However, this changes if we add the requirement that trustworthy behavior should not only be open but 
in fact regular open (a set is regular open if it is the interior of its closure). Then Countermodels holds but 
Moore-closure fails.
19 Arguably, the topology capturing a human notion of similarity ‘supervenes on’ the Euclidean topology, 
i.e., is coarser: if an input s is in an open set U  of the human-similarity topology, there should be some 
small threshold ϵ > 0 such that all inputs s′ that are at least ϵ-much low-level similar to s also are high-
level similar to s—hence U  also is Euclidean open.
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6.3  Probabilistic robustness

Instead of a metric/uniform or topological/non-uniform explication of robustness, we 
can also consider a probabilistic explication (as already mentioned in Sect. 4.1).20 Let 
us consider two motivating examples.

First, we could attempt to ‘smoothen’ the all-or-nothing nature of the uniform 
explication of robustness. There, to recall, we chose a metric d and a range ϵ > 0 
and defined s ⊨ �φ iff, for all s′, if d(s, s′) < ϵ, then s′ ⊨ φ. The range ϵ provides a 
sharp cut-off point: states s′ within the range are considered, states outside are not. To 
smoothen this cut-off point, we can instead choose a probability measure Ms (e.g., a 
multivariate normal distribution centered at s) such that states s′ with small distance 
to s have high Ms-probability and states s′ with large distance to s have low M s-prob-
ability. Thus, we do not exclude states s′ outside of the ϵ-range, we only give them 
lower probability. Then, for some threshold τ ∈ [0, 1]—e.g., τ = 0.7—, we define

(†)	 M, s ⊨ �φ iff Ms({s′ : M, s′ ⊨ φ}) > τ .

Thus, we do not ‘sharply’ require that all states within range ϵ have property φ, but 
rather we ‘smoothly’ require that most states do. More precisely, when we sample 
states in such a way that similar states are more likely, then the probability that φ 
is satisfied is high, i.e., above τ. (Also cf. the probabilistic explication of robustness 
mentioned in footnote 17.)

Second, another example for a probabilistic notion of robustness comes from 
AI systems that generate output probabilistically. Specifically, consider LLMs. 
While they deterministically compute next-token probabilities, the generation of 
the output is still probabilistically done via a decoding method (e.g., Top-K or Top-
P sampling). Thus, we can conceive of a state s as a pair (x, y) where x is a prompt 
and y is a generated output, and we have a probability measure M  (determined 
by the decoding method) where M(y|x) describes how likely output y is given 
prompt x. Say, we consider the prompt x0 =  ‘Tell me an interesting fact about 
Paris’ and the LLM generates y0 = ‘Paris is home to the Eiffel Tower’. We want 
to make sure that the LLM did not just happen to mention ‘Paris’ in the output but 
does so robustly. So we want that the probability of mentioning ‘Paris’ is high. 
Formally, we consider the property p of states s = (x, y) that ‘Paris’ is mentioned 
in y. We define s having p robustly, i.e., s ⊨ �p as M({y : (x, y) ⊨ p}|x) > τ , for 
some fixed threshold τ.

What these examples have in common is that we have a state space X(i.e., the 
states that the AI model can be in), and for each state s ∈ X , we have a probability 
measure Ms. In the first example, Ms describes the notion of ‘similarity to s’, and in 
the second example, where s = (x, y) is a prompt-output pair, Ms is the probability 
measure that assigns a state (x′, y′) the probability M(y′|x′) if x′ = x and otherwise 
the probability 0. Formally, this is exactly the structure of a Markov process, i.e., 
M  is a function M : X → ∆(X) where X  is a nonempty finite set and ∆(X) is 
the set of probability measures on X(Desharnais et al., 2002; Kozen et al., 2013). 

20 We thank an anonymous reviewer for urging us to say more on this.
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(For brevity, we restrict us here to finite state spaces, so we do not have to introduce 
the concept of measurability.) We write Ms for M(s). Our interpretation of robust-
ness, then, is a fragment of Markovian logic (e.g., Kozen et al., 2013; Fagin & Halp-
ern, 1994; Aumann, 1999; Heifetz & Mongin, 2001 and references therein). Given 
τ ∈ [0, 1] and a Markov process M : X → ∆(X), we start with an interpretation I  
of the atomic sentences, i.e., I  maps atomic sentence p to the set of states I(p) ⊆ X  
where p is satisfied. For instance, in our second example, I(p) is the set of those states 
s = (x, y) where output y contains ‘Paris’. Then we define:

	● M, s ⊨ p iff s ∈ I(p)
	● M, s ⊨ ¬φ iff M, s ̸⊨ φ
	● M, s ⊨ φ ∧ ψ iff M, s ⊨ φ and M, s ⊨ ψ
	● M, s ⊨ �φ iff Ms([[φ]]) > τ , where [[φ]] := {s ∈ X : M, s ⊨ φ}
	● M, s ⊨ □□ φ iff, for all s′, M, s′ ⊨ φ.

As a result, M, s ⊨ �φ ⇔ Ms([[φ]]) ≥ 1 − τ  (see Appendix A.5 for a proof).
The resulting logic is not a normal modal logic because the K-axiom is not satis-

fied (see Appendix A.5 for a counterexample). Importantly, though, it still satisfies 
axioms A1–A4 on a derivability relation, when understanding ⊢ as validity in M  
for a fixed interpretation I  (and also when quantifying over all interpretations, see 
Appendix A.5).

Moreover, as already indicated in Sect. 4.1, this explication of robustness violates 
Factivity (i.e., ⊢ �φ → φ): just because φ has high probability does not mean it 
is true. However, we now argue that Weak-factivity P1′ is plausible. First, regard-
ing �φ → �φ, this is valid under the plausible requirement on the threshold that 
τ ≥ 1

2  (proof in Appendix A.5). Second, regarding ��φ → �φ, let us say that 
Markov process M is τ-coherent if, for all A ⊆ X  and x ∈ X , 

	 if Mx(A) > τ , then Mx

(
{y ∈ X : My(A) ≤ τ}

)
≤ τ.

If M is τ-coherent, then it validates ��φ → �φ for all φ and all interpretations I 
(proof in Appendix A.5). Not every Markov process is τ-coherent; however, a suf-
ficient condition is that, for all s ∈ X , we have Ms({s}) ≥ 1 − τ , i.e., each states 
assigns a non-negligible probability to itself (see Appendix A.5 for a proof). This 
makes sense on a similarity interpretation: if Ms describes degrees of similarity to s, 
then s should get a non-negligible degree of similarity to itself. In fact, τ-coherence 
in general seems plausible for our case: if state x considers states y likely that do not 
consider event A likely, then x itself should not consider A likely. In other words, if 
state x considers A likely, then x should not consider states with the opposite opinion 
likely.

The other principles have the same motivation as before: Whatever the choice T  
of trustworthy behavior, P2 says that trustworthy behavior should be robust, P3 says 
that every nontrivial trustworthy behavior is robustly not shown in some state, and P4 
says that if φ is trustworthy, so is 

M

φ = φ ∨ �¬φ, i.e., the claim that the AI-model 
cannot be tricked into φ. Thus, our theorem applied to this specific explication of 
robustness yields the following as the ‘smoothened’ version of Theorem 1.

1 3

   22   Page 22 of 37



Synthese          (2026) 207:22 

Corollary 3  Let τ ∈ [ 1
2 , 1 ], let M : X → ∆(X) be a Markov process, and let 

I  be an interpretation of the atomic sentences. Write ⊢ φ if M , s ⊨ φ for all 
s ∈ X . Then, for every set T of sentences, the principles  P1′, P2, P3, and  P4 
imply triviality: ∀φ ∈ T : ⊢ �φ ↔ �φ, i.e., there is no φ ∈ T  and s ∈ X  with 
1 − τ ≤ Ms([[φ]]) ≤ τ .

Here we make essential use of the fact that we do not need full Factivity but only 
Weak-factivity to get our impossibility. The reason is that Fitch’s lemma actually 
does not need full Factivity but only the axiom �¬�φ → ¬�φ, known as nega-
tive infallibility. (On a doxastic reading of �, this says that one’s beliefs about what 
one does not believe are infallible.) Analogously, on our reinterpretation of Fitch’s 
lemma, we also do not need full Factivity but only ∀φ ∈ T : ⊢ ��φ → �φ. For a 
discussion of Fitch’s paradox beyond factive operators, see San (2020).

So, for Markov processes, the four principles imply triviality. But is there even 
a way to avoid triviality, when giving up on one of the principles? Yes, here is an 
example. Let τ = 2

3  and consider the two states X = {a, b} with the Markov process 
M  defined by Ma({a}) = 3

4 , Ma({b}) = 1
4 , Mb({a}) = 1

2 , and Mb({b}) = 1
2 . Con-

sider an interpretation with I(p) := {a}. Let T := {p}. Then we do not have trivial-
ity, since 1 − τ ≤ Mb([[p]]) ≤ τ . Moreover, principles P1′, P2, and P4 are satisfied, 
and principle P3 indeed fails (proof in Appendix A.5).

6.4  Discussion: uniform vs non-uniform vs probabilistic

We started this section with the ‘what to give up?’ question: whether, in light of the 
no-go result, we should accept triviality or rather give up some of the principles. We 
made the discussion concrete by considering three suggestive explications of robust-
ness: uniform, non-uniform, and probabilistic robustness. Here we summarize these 
explications and discuss what they suggest for the ‘what to give up?’ question.

Uniform robustness satisfies all principles and thus provides some support for 
the principles. By the no-go result, it trivializes, which is problematic in all but 
the simplest AI tasks. So rather than taking uniform robustness to suggest that we 
should accept triviality, the more plausible conclusion is that it is too strong a notion 
of robustness. So we should look for weaker notions of robustness that allow for 
nontriviality.

Thus, we have considered non-uniform robustness. It can easily afford nontrivial 
robust behavior, but, by the no-go result, it has to give up one of the principles, 
namely the Countermodels principle. Hence this explication fares better and tenta-
tively suggests rather giving up a principle than accepting triviality. However, we 
also provided an argument that it is too weak a notion of robustness, because, for the 
natural choice of the Euclidean topology, every classifier turns out to be robust.

As an intermediate notion we considered probabilistic robustness. As a ‘smooth-
ened’ version of uniform robustness, it can avoid triviality (in that sense it is weaker 
than uniform robustness). It also does not render every classifier robust (in that sense 
it is stronger than non-uniform robustness): If an input s gets classified positively, 
it could still be, e.g., if sis close to the decision boundary, that Ms assigns consider-
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able probability to inputs beyond the decision boundary, so the classification is not 
robust on the probabilistic explication. However, whether probabilistic robustness is 
a satisfying explication still needs further discussion: we come back to this as an open 
question in Sect. 8.

7  Outlook: further applications

As an outlook, we highlight in this section the generality of the no-go result. Because 
we only used a derivability relation ⊢ with very minimal assumptions and treated 
T as just a variable for a set of sentences, we can give the no-go result many other 
interpretations besides robustness.

As discussed in Hornischer (2021, ch. 8), a general interpretation of � is as stabil-
ity: M, s ⊨ �φ means that the (abstract) state s stably has the (abstract) property φ in 
the considered model M , i.e., states that are relevantly similar to s still have property 
φ. Thus, the stable properties are those φ that, if true, are stably true (i.e., φ → �φ is 
valid in the model). This interpretation can then be applied to many instances of sta-
bility discussed in the philosophical literature. Some of the examples treated in Horn-
ischer (2021, ch. 8) are: stability under errors of measurement, stability of belief, 
stability as invariance under transformations, and significance in mathematical mod-
eling. The no-go result then provides limitations for each of those interpretations.

Moreover, also within AI, we can give � a different interpretation. One is explain-
ability (Adadi & Berrada, 2018; Miller, 2019). Let us explore this in the remainder of 
this section. Now M, s ⊨ �φ means that we can explain why the AI-model M  shows 
behavior φ on input s. As before, we now want to know: what is the explainable 
behavior, i.e., the behavior that, if observed, we can explain? In other words, what 
can we say about T = {φ : M ⊨ φ → �φ}? Aiming for an answer with our no-go 
result, note that principle P2 is satisfied by construction, and principle P1 requires 
correctness of explanation: if we can explain why the AI-model shows behavior φ on 
input s, the model in particular should show behavior φ (i.e., the explanation should 
be faithful; see, e.g., Jacovi & Goldberg, 2020). To see principle P4, first note that 
we arguably have ⊢ �φ → ��φ (which is known as the transitivity axiom in modal 
logic): if we can explain why φ, then we can also explain why we can explain why φ 
because we can point to our explanation of φ. With this, it is straightforward to show 
that if φ ∈ T , i.e., ⊢ φ → �φ, then also ⊢

M

φ → � M

φ, i.e., 

M

φ ∈ T . Moreover, we 
would expect nontriviality: For at least some φ ∈ T , if we cannot explain why the AI-
model does not show behavior φ on input s, this does not mean that we can explain 
why it shows behavior φ on input s, so �φ → �φ should not be valid.21 As the axi-
oms also have some plausibility, our no-go result suggests that principle P3 must fail: 
There must be explainable behavior φ and an input s such that the AI-model does not 
show behavior φ on input s, but on no input can we explain why the AI-model does 

21 This is familiar from the interpretation of � as (informal) provability. There we also do not have excluded 
middle: just because we cannot prove that something is false does not mean we can prove it is true. (For-
mal provability behaves somewhat differently as it, e.g., violates Factivity �φ → φ, see Boolos (1993).)
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not show behavior φ. More concisely: the absence of some explainable behavior is 
inexplicable!

To give a formal semantics for explainability, we might turn to truthmaker seman-
tics (Fine, 2017). Given our AI-model M  classifying handwritten digits, we allow 
as states pairs s = (x, x′) where x′ is a part of the input image x (e.g., the 9 pixels 
in the middle of image x). Then we interpret M, s ⊨ φ as: x′ is the part of the input 
x that was most relevant for the model showing behavior φ. This is an example of 
a feature attribution method in interpretable machine learning, and other explain-
ability methods could be considered as well. The point is that this aligns well with 
the ‘exactness’ of truthmaker semantics. A state makes true a sentence in truthmaker 
semantics iff it contains exactly as much information to make the sentence true—no 
more, no less. Similarly, a feature attribution explanation should contain exactly the 
information to explain the behavior. Accordingly, the clause for conjunction should 
read: M, s ⊨ φ ∧ ψ iff s is the fusion of two parts s′ and s′′ such that M, s′ ⊨ φ and 
M, s′′ ⊨ ψ. Thus, it would be interesting to compare the present no-go result with 
impossibility results concerning feature attribution (Bilodeau et al., 2024).

8  Open questions

We have seen that we can fruitfully use tools from formal epistemology—and, in 
particular, modal logic—to better understand robustness and trustworthiness. This 
framework also suggests many open questions for further research, as we will see 
now.

Bridges between AI and epistemology. Along the way, we have seen many connec-
tions between AI and epistemology, which we summarize in Fig. 1. Future research 
should work out those connections because they are—as mentioned—useful in both 
directions. It should also discuss to what extent modal conditions for knowledge—
and, analogously, for trustworthiness—are compatible with best practices in statis-
tics (Grote et al., 2024; Mayo-Wilson, 2018; Fletcher & Mayo-Wilson, 2024).22 This 
is particularly important for a further evaluation of the probabilistic explication of 
robustness—to which we will come below.

One important such connection is to consider solutions to Fitch’s paradox of 
knowability that have been suggested in philosophy and see if they translate to pro-
viding nontrivial explications of robustness and trustworthiness.23 For an overview of 
such solutions, see Brogaard & Salerno (2019). For example, Edgington (1985) sug-
gests to replace the knowability principle ‘all truths can be known’ with the principle 
that ‘all actual truths are possibly known to be actual truths’, which does not lead to 
paradox. Thus, the actual situation where the truth holds can be different from the 
counterfactual situation in which the knowledge about this actual truth is obtained. 
This has been criticized by Williamson (1987), but defended, e.g., by Rückert (2009) 
who employs a careful distinction between the indicative and subjunctive mood (akin 

22 We are grateful to an anonymous reviewer for raising this point.
23 Many thanks to an anonymous reviewer for suggesting this and the references to Wansing (2002) and 
Rückert (2009) below.
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to the actuality operator); or by Schlöder (2021) who employs possible ‘courses of 
inquiry’. Yet another suggested solution is to change the underlying logic: So far we 
followed the scientific standard of using classical logic, but some solutions suggest 
moving to, e.g., relevant logic. We pick this up below, when discussing open ques-
tions concerning logic.

Moreover, one might take inspiration from robustness analysis in science (Weis-
berg, 2006; Woodward, 2006; Schupbach, 2018; Fletcher, 2020) and see how this 
may be transferred to machine learning. In essence, robustness analysis is a method 
to determine if a model makes trustworthy predictions by checking if different mod-
els of the same phenomenon make the same prediction. One way of transferring this 
to machine learning would be to train different models of the same phenomenon by 
using the same training dataset but varying, say, the seeds and hyperparameters. This 
is familiar from ensemble learning and is used, e.g., in Wortsman et al. (2022) to 
improve accuracy and robustness in fine-tuning large pre-trained models.

Furthermore, when it comes to further applications of the no-go result beyond 
robustness, we outlined another application to explainability. We may similarly con-
sider further concepts like bias or fairness (e.g., express modally the various defini-
tions of fairness (Shmueli et al., 2023) and their joint inconsistency (Chouldechova, 
2017; Kleinberg et al., 2017)).

Further exploring explications. We have seen three explications of robustness: 
metric/uniform, topological/non-uniform, and probabilistic. While the no-go result 
provides an argument against the metric explication, we already suggested, in Sect. 
6.2, ways to further refine the topological explication. Moreover, the probabilistic 
explication should be explored further. For example, turning probabilistic quantita-
tive statements into all-or-nothing qualitative ones has well-known problems. Notori-
ously, using a fixed threshold (less than 1) faces the lottery paradox, which threatens 
the accepted qualitative statements to not be closed under conjunction (see Genin & 
Huber, 2022 for background and discussion). More generally, there are issues relat-
ing approaches to evidence, justification, and knowledge in statistics with those in 
epistemology (Fletcher & Mayo-Wilson, 2024), in particular when it comes to epis-
temic closure, i.e., the K-axiom (Mayo-Wilson, 2018)—which we did not assume, 
though, in our probabilistic explication. Working these out—generally, but also in 
the context of robustness in AI—is important, as stressed by Grote et al. (2024, p. 5). 
One approach that, at least, avoids the former problem of the lottery paradox is the 
stability theory of belief (Leitgeb, 2017). It requires, roughly, the statement’s high 
probability to be stable under updating with further relevant information. Applying 
this to AI-models thus suggests a probabilistic explication of robustness that is worth 
working out (see Hornischer, 2021, ch. 8 for an initial discussion).

Logic. There also are various interesting questions about how to refine the modal 
logic that we use to describe the AI-model.

First, we already mentioned that some suggested solutions to Fitch’s paradox of 
knowability change the underlying logic (see Brogaard & Salerno, 2019, sec. 3 for 
an overview). In particular, Wansing (2002) suggests a paraconsistent constructive 
relevant modal epistemic logic, and there is a recent surge of interest in combining rel-
evant logic with epistemic logic (see, e.g., Bílková et al., 2016; Punčochář et al., 2023, 
Sedlár & Vigiani, 2024, Standefer & Mares, 2025, to mention but a few). Also, Horn-
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ischer & Berto (2025) provide an interpretation of relevant logic using dynamical sys-
tems, including neural networks. One might also interpret the conditional as expressing 
qualitative laws about the behavior of the AI-model governed by non-monotonic logic 
(Leitgeb, 2005). Finally, we can consider further ways of changing the underlying 
classical logic to a hyperintensional logic (Berto & Nolan, 2021): namely, the already 
mentioned truthmaker semantics as a potential formalization for explainability.

Second, we could also add a counterfactual (⇝) to describe counterfactual expla-
nations like ‘if you earned 10k more, you would have gotten the loan’ (Wachter et 
al., 2017). Then M, s ⊨ φ ⇝ ψ would mean something along the lines of: for the 
inputs s′ closest to s where φ holds, also ψ holds.24 For an explication of this idea, 
see Hudetz & Crawford (2022). Determining a sound and complete axiomatization 
of such counterfactuals provides the logic of counterfactual explanations for the AI-
model, which helps to assess its philosophical plausibility.

Third, one can also add operators known from dynamic epistemic logics (Baltag 
& Renne, 2016) to describe the learning dynamics of the AI-model and how this 
changes its behavior. For example, s ⊨ [p2]φ could mean something along the lines 
of: after learning that input s depicts the digit 2, the AI-model shows behavior φ on 
input s. See, e.g., Baltag et al. (2019a, b) and Schultz Kisby et al. (2024). Similarly, 
we could also use the modal µ-calculus, so we can speak about the behavior of the 
AI-model after training on a dataset, i.e., after having reached a fixed point of the just 
mentioned learning process.

Quantitative version. Often, impossibility results spur possibility results by ana-
lyzing what still is possible. Is this the case here, too? Specifically, can we get pos-
sibilities when moving from a qualitative to a quantitative description of robustness? 
For example, rather than just qualitatively describing whether the AI-model behaves 
robustly on a given input, one might quantitatively analyze the robustness range ϵ or 
the probability of robust behavior (also cf. Freiesleben & Grote, 2023).

9  Conclusion

We have seen that the robustness and trustworthiness of AI-models can profitably 
be investigated using modal logic. We formulated four prima facie plausible prin-
ciples about the notions of robustness and trustworthiness (no matter how they are 
understood precisely). However, with a reinterpretation of Fitch’s lemma, we have 
proven that these principles imply triviality. This has consequences for formalizing 
the concepts of robustness and trustworthiness, which is necessary for verifying them 
for AI-models. Specifically, a uniform notion of robustness is too strong, while a non-
uniform notion is too weak—with a probabilistic notion of robustness being a prom-
ising intermediary. We also noted the generality of the no-go result: it also applies to 
explainability in AI and stability in philosophy. As indicated by the open questions, 
there is much potential for a fruitful interaction between AI, on the one hand, and 
logic and formal epistemology, on the other hand.

24 Here it again matters what counts as close: which metric we use, whether we consider only realistic or 
also adversarial inputs, etc. (Freiesleben, 2022).
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A Appendix

A.1 Proof of Theorem 1

Proof of Theorem 1  If φ ∈ T  were not trivial, there are inputs s and s′ with M, s ⊨ φ 
and M, s′ ̸⊨ φ. Since the input space is path-connected, there is a path from sto s′. By 
dividing the path into sufficiently small steps, we get a sequence of points on the path 
s = s0, s1, . . . , sN = s′ with d(si, si+1) < ϵ.25 Since M, s0 ⊨ φ and trustworthiness 
implies robustness, also M, s0 ⊨ �φ, so, since s1 is similar to s0, also M, s1 ⊨ φ. But 
now we can apply the same reasoning to s1 and get that M, s2 ⊨ φ. And so on, until 
eventually M, sN ⊨ φ, contradicting M, s′ ̸⊨ φ. � □

A.2 Proof of Theorem 2

In its reinterpreted form, Fitch’s lemma states: If all false T-sentences are robustly 
false somewhere, they, in fact, are already robustly false:

Lemma 4  (Fitch’s lemma). Let ⊢ be a derivability relation and T  a set of sentences 
satisfying P1′ and P4.26 Then (1) implies (2) where

1.	 ∀φ ∈ T : ⊢ ¬φ → �� �¬φ
2.	 ∀φ ∈ T : ⊢ ¬φ → �¬φ.

The key idea for the proof is to substitute the (dual) Moore sentence into the 
assumption via a proof by contradiction (see Sect. 5.2). The formal proof is a slight 
adaption of the standard proof of Fitch’s lemma (e.g van Benthem, 2004; Brogaard & 
Salerno, 2019). and goes as follows.

Proof  Assume (1) and let φ ∈ T . To show ⊢ ¬φ → �¬φ, we show ‘by contradic-
tion’ that ⊢ ¬(¬φ → �¬φ) → ⊥ (using that (¬χ → ⊥) → χ is a truth-functional 
tautology). We formally show this by a chain of conditionals. First, qua truth-func-
tional tautology, 

	 ⊢ ¬(¬φ → �¬φ) → ¬φ ∧ ¬�¬φ.� (1)

Next, by P4, let ψ ∈ T  with ⊢ ψ ↔

M

φ. Hence, by using the appropriate truth-
functional tautologies, ⊢ proves ¬ψ ↔ ¬

M

φ and ¬

M

φ ↔ ¬φ ∧ ¬�¬φ, so 

25 To be precise: Let p : [0, 1] → X  be the path with X  the input space and p(0) = s and 
p(1) = s′. Since p is a continuous function from a compact metric space into a metric space, it is 
uniformly continuous (Heine–Cantor theorem). So there is δ > 0 such that, for all t, t′ ∈ [0, 1]
, if |t − t′| < δ, then d(p(t), p(t′)) < ϵ. Let N ≥ 1 be big enough such that 1

N < δ (which 
exists by the Archimedean property). For i = 0, . . . , N , set ti := i

N  and si := p(ti). Then 
s0 = p(t0) = p(0) = s and sn = p(tn) = p(1) = s′ and, for i ∈ {0, . . . , N − 1}, 
d(si, si+1) = d(p(ti), p(ti+1)) < ϵ since |ti − ti+1| = | i+1

N − i
N | = 1

N < δ.
26 In fact, only the first conjunct of P1′ is needed, namely ∀φ ∈ T : ⊢ ��φ → �φ.
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	 ⊢ ¬φ ∧ ¬�¬φ ↔ ¬ψ.� (2)

Since ψ ∈ T , we have, by assumption 1, that 

	 ⊢ ¬ψ → �� �¬ψ.� (3)

By congruence for � and (semi-) congruence for �� , Equation 2 yields 

	 ⊢ �� �(
¬ψ

)
↔ �� �(

¬φ ∧ ¬�¬φ
)
.� (4)

By distributivity for � (i.e., ⊢ �(φ ∧ ψ) → (�φ ∧ �ψ)) and semi-congruence for 
��, 

	 ⊢ �� �(
¬φ ∧ ¬�¬φ

)
→ ��

(�¬φ ∧ �¬�¬φ
)
.� (5)

By  P1′, we have ⊢ �¬�¬φ → ¬�¬φ. By the truth-functional tautology 
(φ → ψ) → (χ ∧ φ → χ ∧ ψ) and semi-congruence for �� , we have 

	 ⊢ ��
(�¬φ ∧ �¬�¬φ

)
→ ��

(�¬φ ∧ ¬�¬φ
)
.� (6)

By the truth-functional tautology (φ ∧ ¬φ) → ⊥ and semi-congruence for ��, 

	 ⊢ ��
(�¬φ ∧ ¬�¬φ

)
→ �� ⊥.� (7)

Finally, since ⊢ ¬⊥ (a truth-functional tautology), necessitation implies ⊢ □□ ¬⊥, 
so ⊢ ¬�� ⊥, so, by the truth-functional tautology ¬φ → (φ → ⊥), we have 

	 ⊢ �� ⊥ → ⊥.� (8)

Now we can chain all these conditionals together27 to get ⊢ ¬(¬φ → �¬φ) → ⊥, 
as desired. � □

Now we can easily prove the no-go result.

Proof of Theorem 2  By P1′ and P4, Lemma 4 applies, so P3 implies, for any φ ∈ T , that 
⊢ ¬φ → �¬φ, i.e., ⊢ �φ → φ. By P2, also ⊢ φ → �φ. By P1′, also ⊢ �φ → �φ. 
So ∀φ ∈ T : ⊢ �φ ↔ �φ, as needed. Since P1 implies P1′, this reasoning also goes 
through when using P1 instead of P1′. � □

A.3 Proofs in Section 6.1

We show that, in the setting of uniform robustness described in Sect. 6.1, the logical 
axioms A1–A4 and the principles P1–P4 are satisfied.

27 More precisely, if ⊢ φ → ψ and ⊢ ψ → χ, use the truth-functional tautology 
(φ → ψ) →

(
(ψ → χ) → (φ → χ)

)
 and modus ponens to obtain ⊢ φ → χ.
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	● Axiom A1: if φ is a truth-functional tautology, then M, s ⊨ φ reduces to a tauto-
logical truth-condition in the metalanguage, which hence is satisfied. Moreover, 
if ⊢ φ and ⊢ φ → ψ, then φ is true at all states and any state which makes φ true 
also makes ψ true, so all states make ψ true, so ⊢ ψ.

	● Axiom A2 and A3: In this setting, � (resp., □□ ) has the usual Kripke semantics 
with the binary relation sRs′ iff d(s, s′) < ϵ (resp., sRs′ holds always). So these 
are normal modal operators and hence satisfy A2 and A3.

	● Axiom A4: We assume that there is at least one state s, so s ̸⊨ ⊥, so ̸⊢ ⊥.
	● Factivity: We have M ⊨ �φ → φ because similarity is reflexive: if s ⊨ �φ, then, 

since d(s, s) = 0 < ϵ, also s ⊨ φ.
	● Robustness: If φ ∈ T , then, by definition of T, M ⊨ φ → �φ.
	● Countermodels: If φ ∈ T  and s ⊨ ¬φ but there is no s′ with s′ ⊨ �¬φ, then, in 

particular, s ̸⊨ �¬φ. So there is s′ with d(s, s′) < ϵ and s′ ̸⊨ ¬φ, i.e., s′ ⊨ φ. 
Since φ ∈ T , we have M ⊨ φ → �φ, so s′ ⊨ �φ. Since d(s′, s) = d(s, s′) < ϵ, 
have s ⊨ φ, contradiction.

	● Moore-closure: If φ ∈ T  but φ ∨ �¬φ ̸∈ T , then there is s with s ⊨ φ ∨ �¬φ but 
s ̸⊨ �(

φ ∨ �¬φ
)
. By the latter, there is s′ with d(s, s′) < ϵ and s′ ̸⊨ φ ∨ �¬φ. 

Since s′ ̸⊨ �¬φ, there is s′′ with d(s′, s′′) < ϵ and s′′ ⊨ φ. Since M ⊨ φ → �φ, 
also s′′ ⊨ �φ. Since d(s′′, s′) = d(s′, s′′) < ϵ, also s′ ⊨ φ, contradiction.

A.4 Proofs in Section 6.2

We work in the setting of Sect. 6.2, proving the claims made there:

	● Claim: p ∈ T  and M ̸|= �p ↔ �p.

Proof: First, it is not difficult to show: φ ∈ T  (i.e., φ is robust) iff 
[[φ]] := {s ∈ X : M, s ⊨ φ} is an open subset of the input space X. Hence p ∈ T . 
Second, it is a basic fact of the topological semantics that � is the topological 
interior operator and � is the topological closure operator. Hence we cannot have 
M |= �p ↔ �p, because otherwise the closure of U, i.e., [[�p]] is identical to the 
interior of U, i.e., [[�p]], which implies that U is closed (and also open).

	● Claim: Axioms A1–A4 as well as Factivity, Robustness, and Moore-closure are 
satisfied.

Proof: For the axioms we reason as in Appendix A.3, except for �, which is read-
ily seen to be a normal modal operator on the topological interpretation. Factivity 
is satisfied since [[�φ]] is the topological interior of [[φ]]and hence a subset of 
it. Robustness is satisfied by the stipulation T := {φ : M ⊨ φ → �φ}. Moore-
closure is satisfied because, if φ ∈ T , then [[φ]] is open, so also [[φ]] ∪ [[�¬φ]] is 
open, and hence φ ∨ �¬φ ∈ T .

	● Claim: For every nontrivial robust behavior φ (open and not closed), the AI-mod-
el can be φ-tricked (

M

φ is false on some inputs) but for generic inputs it cannot 
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(

M

φ is generically true, i.e., an open and dense set)

Proof: Failure of the Countermodels principle means that there is an input s 
where ¬

M

φ is true (hence 

M

φ is false on some input) but �� �¬

M

φ is false. The 
latter means that �¬

M

φ is false everywhere, i.e., ¬�¬

M

φ is true everywhere, 
so [[� M

φ]] = X . Hence the closure of [[

M

φ]] is the whole space, so 

M

φ is dense. 
Since 

M

φ ∈ T , it also is open.

	● Claim: Violating 

M

φ amounts to being in the topological boundary of [[φ]].

Proof: Note that [[¬

M

φ]] = [[¬φ ∧ ¬�¬φ]] = [[¬φ]] ∩ [[�φ]]. Since [[φ]] is open 
and � is topological closure, [[¬

M

φ]] is the closure of [[φ]] minus the interior of 
[[φ]], which, by definition, is the topological boundary of [[φ]].

A.5 Proofs in Section 6.3

In this subsection, let τ ∈ [0, 1], let M : X → ∆(X) be a Markov process, and let I  
be an interpretation. We prove the claims made in Sect. 6.3.

	● Claim: M, s ⊨ �φ ⇔ Ms([[φ]]) ≥ 1 − τ .

Proof: M, s ⊨ �φ iff Ms([[¬φ]]) ̸> τ  iff 1 − Ms([[φ]]) ≤ τ  iff Ms([[φ]]) ≥ 1 − τ .

	● Claim: The K-axiom is not valid for the Markov process interpretation. (The 
counterexample can also be chosen to be τ-coherent.)

Proof: Let τ = 2
3 . Consider the three states X = {a, b, c} and the Markov process 

M which maps x ∈ X  to the measure Mx defined by Mx({x}) = 1
2 ≥ 1 − τand 

Mx({y}) = 1
4  for y ∈ X \ {x}. (The sufficient condition mentioned in the claim 

below shows that this Markov process is τ-coherent.) Consider the interpretation 
I with I(p) = {a, b} and I(q) = {a}. So [[p → q]] = {c, a}. Then a ⊨ �(p → q) 
since Ma([[p → q]]) = 1

4 + 1
2 > τ , and a ⊨ �p since Ma([[p]]) = 1

2 + 1
4 > τ , but 

a ̸⊨ �q since Ma([[q]]) = 1
2 ̸> τ .

	● Claim: Axioms A1–A4 are satisfied when reading ⊢ as M, s ⊨ φ for all s ∈ X . 
This implies that this also holds when we define ⊢ by additionally quantifying 
over all interpretations on M.

Proof: Regarding  A1, we reason as in Appendix  A.3. Regarding  A2, we 
have, for any s ∈ X , that Ms([[φ ∧ ψ]]) ≤ Ms([[φ]]), and similarly for 
ψ, so if Ms([[φ ∧ ψ]]) > τ , then Ms([[φ]]) > τ  and Ms([[ψ]]) > τ , hence 
⊢ �(φ ∧ ψ) → (�φ ∧ �ψ). Moreover, if ⊢ φ ↔ ψ, then [[φ]] = [[ψ]], so, for all 
s ∈ X , we have Ms([[φ]]) > τ  iff Ms([[ψ]]) > τ , hence ⊢ �φ ↔ �ψ. Regard-
ing A3, we use the fact that □□  is a normal modal operator. Regarding A4, let, 
since X is nonempty, s ∈ X , so s ̸⊨ ⊥, so ̸⊢ ⊥.
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	● Claim: If τ ≥ 1
2 , then, for any φ ∈ L and s ∈ X , we have M, s ⊨ �φ → �φ.

Proof: If Ms([[φ]]) > τ , then, since τ ≥ 1
2 ≥ 1 − τ , we have Ms([[φ]]) ≥ 1 − τ .

	● Claim: If M is τ-coherent, then, for any φ ∈ L and s ∈ X , we have 
M, s ⊨ ��φ → �φ.

Proof: By contraposition, assume s ̸⊨ �φ and show M, s ̸⊨ ��φ. By assump-
tion, s ⊨ �¬φ. Write A := [[¬φ]]. Then Ms(A) > τ , so, since M is τ-coherent, 
Ms

(
{y ∈ X : My(A) ≤ τ}

)
≤ τ . Note that 

	 {y ∈ X : My(A) ≤ τ} = {y ∈ X : y ̸⊨ �¬φ} = [[�φ]] .

So we have Ms

(
[[�φ]]

)
≤ τ . Hence s ̸⊨ ��φ, as needed.

	● Claim: There are Markov processes that are not τ-coherent.

Proof: Let τ = 2
3 . Consider the two states X = {a, b} and the Markov 

process M defined by Ma(a) = 1
4  and Ma(b) = 3

4 , and Mb(a) = 3
4  and 

Mb(b) = 1
4 . Consider A := {b} ⊆ X  and x := a. Then Ma(A) = 3

4 > τ , but 
Ma({y : My(A) ≤ τ}) = Ma({b}) = 3

4 ̸≤ τ .

	● Claim: Assume that, for all s ∈ X , we have Ms({s}) ≥ 1 − τ . Then M is τ-
coherent.

Proof: Let A ⊆ X  and s ∈ X . Assume Ms(A) > τ . Then 

	 Ms

(
{y ∈ X : My(A) ≤ τ}

)
≤ Ms

(
X \ {s}

)
= 1 − Ms({s}) ≤ τ,

as needed.

	● For the Markov process M defined in Sect. 6.3, principles P1′, P2, and P4 are 
satisfied but principle P3 fails.
Proof: Recall that τ = 2

3  and Ma({a}) = 3
4 , Ma({b}) = 1

4 , Mb({a}) = 1
2 , 

and Mb({b}) = 1
2 , with I(p) = {a} and T = {p}. Since τ ≥ 1

2  and M satisfies 
the sufficient condition for τ-coherence, principle P1′ is satisfied. For P2, note 
that if s ⊨ p, then s = a, so Ms([[p]]) = 3

4 > τ , so s ⊨ �p. Moreover, note that 
[[�¬p]] = ∅, because if x ⊨ �¬p, then Mx({b}) > τ , but Ma({b}) = 1

4 ̸> τ  and 
Mb({b}) = 1

2 ̸> τ . Hence  P3 fails, since b ⊨ ¬p but b ̸⊨ �� �¬p. Finally, prin-
ciple P4 holds, since, for φ ∈ T , take ψ := φ = p ∈ T , then ⊢ ψ ↔

M

φ, since 
[[

M

φ]] = [[p]] ∪ [[�¬p]] = [[p]] = [[ψ]].
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