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Abstract

Lots of things are usefully modelled in science as dynamical sys-
tems: growing populations, flocking birds, engineering apparatus,
cognitive agents, distant galaxies, Turing machines, neural net-
works. We argue that relevant logic is ideal for reasoning about
dynamical systems, including interactions with the system through
perturbations. Thus, dynamical systems provide a new applied
interpretation of the abstract Routley-Meyer semantics for relevant
logic: the worlds in the model are the states of the system, while
the (in)famous ternary relation is a combination of perturbation
and evolution in the system. Conversely, the logic of the rele-
vant conditional provides sound and complete laws of dynamical
systems.
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1 Introduction
To really understand the workings of a system (be it physical, biological,
social, economical, computational), we shouldn’t limit ourselves to observ-
ing it: we should also interact with it. We may want to know the effects
of administering a certain medication; understand the consequences of
implementing a certain tax policy in a society; test how a new material
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reacts to certain chemicals; check whether an artificial neural network
behaves as intended on slightly different inputs. In each case, we wonder
about the truth value of conditionals of the form:

1. Whenever we perturb the system from its current state into a state
where φ, it will then evolve into a state where ψ.

Such perturbation conditionals, when true, can be regarded as laws
describing the behaviour of the system: that φ is followed by ψ. Knowing
such laws matters for the explanation and interpretation of the system,
for the scientific goal of predicting how the system may behave, but also
for the technological goal of verifying that the system robustly behaves
as we want it to.

Causal models provide a well-known approach to perturbation con-
ditionals (e.g. Hitchcock 2023; Pearl 2009): systems are represented as
so-called structural causal models. Perturbations are formalized as inter-
ventions changing such models. Perturbation conditionals are then taken
as structural counterfactuals: ‘If φ were made true by an intervention,
then ψ would be true’. This gives a semantics to perturbation conditionals;
there is quite some discussion of their logic (e.g. Briggs 2012; Galles and
Pearl 1998; Halpern 2000; Ibeling and Icard 2020; Zhang 2013). We
will pursue a different and novel approach to perturbation conditionals,
giving a logic and a semantics for them: we will analyze systems as
dynamical systems, and their logic will turn out to be relevant logic. We
don’t oppose the causal model approach, rather develop a different and
hopefully enlightening perspective on perturbation conditionals.

Our own view gets off the ground by observing that we can rephrase
the perturbation conditional 1 as:

2. For all states y and z of the system, if there is a perturbation moving
the system from its current state x to y from which it evolves to z,
then if φ holds at y, then ψ holds at z.

This says that a certain conditional—let’s write it ‘φ ⇝ ψ’—holds
at the current state x of the system. Let’s write this as ‘x ⊨ φ ⇝ ψ’.
Then we take a ternary relation on the states of the system, Rxyz: ‘A
perturbation changes the system from state x to y, from which it evolves
to z’. With this notation, we can further rephrase 1—i.e., x ⊨ φ⇝ ψ—as

3. For all states y and z with Rxyz, if y ⊨ φ, then z ⊨ ψ.

Now these are precisely the truth conditions for the conditional in relevant
logic, under its widely discussed—and (in)famously abstract—Routley-
Meyer semantics (R. Routley 1979; R. Routley and R. Meyer 1972a,b,
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1. φ → (ψ → φ)
2. ¬φ → (φ → ψ)
3. φ → (ψ → ψ)

4. φ → (ψ ∨ ¬ψ)
5. (φ ∧ ¬φ) → ψ

Figure 1: The paradoxes of the material and strict conditional

1973). We will work out this key idea as a precise semantics of perturbation
conditionals, whose sound and complete logic is axiomatized by relevant
logic.

That a non-classical logic—one postulating situations where the law
of self-implication φ → φ can fail!—should be the logic of dynamical
systems is explained by our interpretation of the conditional in terms of
perturbation and evolution. It might well be that we perturb a state x to
a state where φ is true (say, mitigating pain by taking painkillers), but
then the system evolves into a state where φ is not true anymore (the
pain coming back when the painkillers wear off), so x doesn’t make true
φ⇝ φ. Besides addressing perturbation conditionals, this will also deal
with a long-standing open problem: providing an applied interpretation
of the abstract Routley-Meyer semantics. Relevant logic turns out to
be the logic of dynamical systems, and the logic of relevant conditionals
turns out to be the logic of the laws governing dynamical systems.

Experts of either dynamical systems or relevant logic may not know
much about the other topic; so we provide very short introductions to
both. We first briefly outline relevant logic (section 2) and its Routley-
Meyer semantics (section 3). Section 4 makes sense of its treatment
of negation and section 5 sketches the struggles so far in interpreting
its abstract ternary relation. We then turn to dynamical systems: In
section 6, we give an informal introduction, which we formalize (including
a notion of perturbation) in section 7. Section 8 shows how this gives
rise to a Routley-Meyer model and thus gives a semantics for a logic of
dynamical systems including perturbation conditionals. Section 9 shows
that, conversely, every Routley-Meyer model arises, up to equivalence,
from a dynamical system. This gives the desired soundness and complete-
ness results. Section 10 then investigates this bridge between systems
and logics by starting to explore how certain subclasses of systems are
characterized by certain logical axioms. We conclude in section 11.

2 Relevant logic
Relevant logic was to capture a notion of conditionality free from the
paradoxes of the material and strict conditional listed in figure 1. These
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offend our sense that a conditional should only hold when its antecedent
has some connection to its consequent; otherwise, whatever grounds the
truth of the former cannot be transmitted to the latter. ‘If snow is white,
then if the moon is made of green cheese, then snow is white’ (an instance
of 1) seems to make snow’s whiteness depend on a silly falsehood, given
only that snow is white; ‘If Aidan doesn’t smoke, then if he does the
Earth will implode’ (an instance of 2) seems to make the end of life on
Earth depend on Aidan’s smoking, given only that he doesn’t. Even if
one interprets the conditional as strict or modally qualified, this is not
enough for 3–5: ‘If Midori is happy, then if grass is green, then grass
is green’ (an instance of 3) seems to relate the fate of self-implication
to Midori’s mood. ‘If I’m a monkey’s uncle, then either 2 is prime or
it’s composite’ seems to make a necessary truth depend on one’s having
primates of other species as relatives. However, in normal modal logic,
the consequents of 3 and 4 fail in no possible scenario.

Anderson and Belnap (1975) held as a necessary condition for a con-
ditional φ → ψ to be valid, or a theorem, that φ and ψ share some
sentential variable, thus capturing syntactically the idea of a connec-
tion between antecedent and consequent. This was called the Variable
Sharing Property (VSP) (Dunn and Restall 2002, p. 27). Anderson and
Belnap first came up with proof-theoretic logical systems ensuring that
no conditional would count as a theorem unless it had the VSP.1 Take a
sentential language with a countable set At of atoms p1, p2, . . ., negation ¬,
conjunction ∧, disjunction ∨, conditional →. We use φ, ψ, χ, θ, φ1, φ2, ...
as meta-variables for formulas. The well-formed formulas are the atoms
and, if φ and ψ are well-formed, so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ).
(We will normally omit the outermost parentheses; a biconditional ↔ can
be defined out of → and ∧ the usual way.) The axioms and rules of the
the basic positive relevant logic B+ are given in figure 2. One can add to
the positive logic principles for negation such as:

(A7) ¬(φ ∨ ψ) ↔ (¬φ ∧ ¬ψ)
(A8) ¬(φ ∧ ψ) ↔ (¬φ ∨ ¬ψ)
(A9) φ ↔ ¬¬φ
(R4) φ → ψ ⊢ ¬ψ → ¬φ.

1Besides the one of ‘content connection’, there’s another informal idea at the origins
of the Anderson-Belnap relevant tradition: that of ‘making real use’ of assumptions.
What’s bad, e.g., with paradox 1, is that if φ is already given, ψ is really doing nothing
to get us to infer φ. We don’t much talk of this other informal idea as it becomes
showy especially if one sees relevance proof-theoretically (compare Dunn and Restall
2002), whereas we have a models-first approach.
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The axioms

(A1) φ → φ
(A2) φ → (φ ∨ ψ) and ψ → (φ ∨ ψ)
(A3) (φ ∧ ψ) → φ and (φ ∧ ψ) → ψ
(A4) (φ ∧ (ψ ∨ χ)) → ((φ ∧ ψ) ∨ χ)
(A5) ((φ → ψ) ∧ (φ → χ)) → (φ → (ψ ∧ χ))
(A6) ((φ → χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ)

The rules

(R1) φ,φ → ψ ⊢ ψ
(R2) φ,ψ ⊢ φ ∧ ψ
(R3) φ → ψ, χ → θ ⊢ (ψ → χ) → (φ → θ)

plus their disjunctive forms (the disjunctive form of a rule φ1, . . . , φn ⊢ ψ is
χ ∨ φ1, . . . , χ ∨ φn ⊢ χ ∨ ψ).

Figure 2: The relevant logic B+

The following extensions of B+ are often considered:

BM = B+ + (A7–8) + (R4) B = BM + (A9).

System B was taken as the basic relevant logic. There are stronger relevant
systems; one of Anderson and Belnap’s favourite ones is called R. We’ll
talk about that in section 10. Until then, we will be concerned with the
basic (positive) relevant logic.

3 The Routley-Meyer Semantics
The issue of finding a semantics entered the relevantist agenda early on:

Yea, every year or so Anderson & Belnap turned out a new
logic, and they did call it E, or R, or EI , or P − W , and
they beheld such logic, and they were called relevant. And
these logics were looked upon with favor by many, for they
captureth the intuitions, but by many they were scorned, in
that they hadeth no semantics. Word that Anderson & Belnap
had made a logic without semantics leaked out. Some thought
it wondrous and rejoiced, that the One True Logic should
make its appearance among us in the Form of Pure Syntax,
unencumbered by all that set-theoretical garbage. Others said
that relevant logics were Mere Syntax. (R. Routley and R.
Meyer 1973, p. 194)
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Initial algebraic semantics based on De Morgan lattices didn’t seem
too enlightening: they looked like pure, not applied semantics (Carnap
(1948), Dummett (1973), and Plantinga (1974)). Pure semantics consists
of mathematical structures that interpret the formal language but are
themselves uninterpreted. Applied semantics concerns the interpretation
of the mathematical structures as representing something we already have
some independent grasp of.

The frame semantics developed by R. Routley and V. Routley (1972)
and R. Routley and R. Meyer (1972a,b, 1973) seemed similar enough to
Kripke or possible worlds semantics for modal logic to warrant optimism
on a plausible interpretation. First let’s see what a core issue was:
paradoxes like 3–5 in figure 1 are conditionals featuring (classical and
normal modal) logical truths in their consequent or falsities in their
antecedent. These are supposed to hold everywhere and, respectively,
nowhere in logical space. Then where can we find situations falsifying
the former, or verifying the latter, while at the same time retaining their
status as logical truths/falsities? Routley and Meyer addressed the issue
by resorting to situations different from classically possible worlds. To see
how these work, we will introduce (a small variation on) the simplified
semantics for relevant logics due to Priest and Sylvan (1992) and Restall
(1993); this is easier to work with and has become somewhat canonical
after being adopted in Priest (2008)’s classic textbook.

A relevant model for the language above is a tuple M = (W, 0, R, C, i)
where:

• W is a set of worlds
• 0 ∈ W is the base world
• R ⊆ W 3 is a ternary relation
• C ⊆ W 2 is a binary relation
• i : W × At → {1, 0} is an interpretation function

such that, for all x, y ∈ W :

R0xy if and only if x = y (1)

This is called the normality condition; whether in the original Routley-
Meyer semantics or in the Priest-Sylvan-Restall simplified variant, it
makes for a standard way of marking a difference between the normal
or base world (or, worlds) and other worlds in the models (see Priest
2008: 189-90 for discussion). The truth clauses go as follows. (In the
metalanguage we use x, y, z, x1, x2, ..., ranging over worlds; ⇒,⇔,&,∀,∃,
with the usual reading; and ̸⊩ for ‘not ⊩’.)

(At) M,x ⊩ p ⇔ i(x, p) = 1
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(¬) M,x ⊩ ¬φ ⇔ ∀y ∈ W (xCy ⇒ y ⊮ φ)
(∧) M,x ⊩ φ ∧ ψ ⇔ M,x ⊩ φ & M,x ⊩ ψ
(∨) M,x ⊩ φ ∨ ψ ⇔ M,x ⊩ φ or M, x ⊩ ψ

(→) M,x ⊩ φ → ψ ⇔ ∀y, z ∈ W (Rxyz & y ⊩ φ ⇒ z ⊩ ψ)

We’ll omit reference to M when this is clear from context. Logical
consequence is truth preservation at the base world in all models; with Σ
a set of formulas:

Σ ⊨ φ ⇔ for all M : M, 0 ⊩ ψ for all ψ ∈ Σ ⇒ M, 0 ⊩ φ.2

Logical truth, ⊨ φ, is entailment by the empty set: truth at the base
world in all models.

We’ll call positive the models where we take away C and forget about
the truth conditions for negation. The logic B+ is (strongly) sound and
complete with respect to the class of positive models (Priest and Sylvan
1992). We’ll call ordered the models M = (W, 0, R, C,≤, i) with a partial
ordering ≤ on W which is hereditary or preservation: if x ⊩ φ and x ≤ y,
then y ⊩ φ.3 One can then regard unordered models as those where the
order is the identity relation (known as discrete order).

We called the points in W ‘worlds’, but they’re no classically possible
worlds. Let’s check how the semantics invalidates paradoxes 3–5 of figure 1.
Consider the model M = (W, 0, R, C, i) consisting of four distinct worlds,
say W = {0, a, b, c}, a relation R where only R0ww (for w ∈ W ) and
Rabc hold, a compatibility relation with only aCb, and an interpretation
where only p is true at a and q at b. Then

• 0 ⊮ p → (q → q) because a ⊩ p but a ⊮ q → q (since Rabc, b ⊩ q,
but c ̸⊩ q),

• 0 ̸⊩ p → (q ∨ ¬q) because a ⊩ p but a ̸⊩ q ∨ ¬q (since a ̸⊩ q and
a ̸⊩ ¬q for aCb and b ⊩ q)

2This is the textbook definition (e.g. Priest 2008, p. 10.2.6). Many thanks to an
anonymous referee for mentioning a discussion of Anderson, Belnap, and Dunn (1992,
p. 196): They call this definition the ‘official’ consequence to stress that it, itself, is
not a relevant consequence: the ⇒ is not a relevant conditional in the metalanguage,
but the usual notion of entailment in our classical metalanguage. This definition
affords the strong version of soundness and completeness (see the next paragraph)
and is in line with the common convention of using a classical metalanguage when
discussing a non-classical logical system. It seems particularly suited in our case where
we claim that dynamical systems—standard objects in classical mathematics—provide
an interpretation to the specific logical system of relevant logic.

3Sometimes they are defined differently (e.g. Restall 1993, p. 498): ≤ is a binary
relation (containment), required to satisfy some easy-to-check properties that precisely
ensure the desired heredity condition.
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• 0 ⊮ (p∧ ¬p) → q because a ⊩ p∧ ¬p (since a ⊩ p and a ⊩ ¬p for if
aCw, then w = b, and b ̸⊩ p) but a ̸⊩ q.

The semantics validates φ → φ: it is true at the base world 0 in any
model M , because if R0xy and x ⊩ φ, then also y ⊩ φ since x = y.
Self-implication can only fail at non-base worlds. (Flag the point: the
base world is special in this respect – and rightly so: we’ll get back to
this.)

Thus, 3–5 are invalidated thanks to points of evaluation which can fail
self-implication, can be locally inconsistent (making true both a formula
and its negation), and can be incomplete (making true neither). So
they cannot represent classically possible worlds. What things can they
represent, then, such that the relations R and C between such things,
which give the truth conditions for the conditional and negation, make
sense? That’s what an applied semantics has to answer.

4 Negation and (In)Compatibility
For C, we don’t even need to be specific on the nature of the things.
That’s because there’s a tradition, dating back at least to the Birkhoff–von
Neumann–Goldblatt characterization of ortho-negation in quantum logic
(Birkhoff and von Neumann 1936; Goldblatt 1974), and developed by Berto
(2015), Berto and Restall (2018), Došen (1986), Dunn (1993), and Restall
(1999), and many others, accounting for the meaning of negation via the
fundamental notions of compatibility and its polar opposite, incompatibility
or exclusion. And incompatibility is so basic to (our experience of) the
world (Kinkaid 2020), that it’s easy to make sense of it as holding between
the most diverse kinds of things.4 So just take ‘xCy’ as saying that x
and y are compatible. Then (¬) has it that ¬φ holds at a point iff φ fails
at all compatible points. Using incompatibility I, i.e., the complement of
compatibility C, one could equivalently go for:

(¬) M,x ⊩ ¬φ ⇔ ∀y ∈ W (y ⊩ φ ⇒ xIy)
4E.g., one could see it as a relation between features of objects: being square

rules out being circular ; being prime rules out being composite; being entirely located
here rules out being entirely located over there at the same time. Or, it could hold
between states of affairs: the ball’s being red all over rules out its being blue all over;
this number’s being prime rules out its being composite; the table’s being wholly
in the garden rules out its being wholly in the kitchen. Or, it could hold between
the corresponding propositions: that one is in the garden rules out that one is in
the kitchen; etc. Or, it could hold between pieces of information, or of evidence, or
whatnot. See Berto 2015, whose metaphysical story is summarized in this footnote.
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So ¬φ holds at a point iff any point where φ holds is incompatible with
it. Points in W making true formulas, then, could be (in)compatible due
to properties of the objects that exist at them; or, to states of affairs
that obtain at them, or, to the states of affairs they themselves are; or,
to propositions they support, or include; or, to pieces of information or
evidence they convey; or whatnot. The setting makes plain intuitive
sense of the meaning of negation, because we utter negations to exclude
things or express incompatibilities (Kinkaid 2020; Mares 2004; Price 1990;
Restall 1993). By imposing conditions on C, one can validate various
principles involving negation. Here are three:

• ∀xy(xCy ⇒ yCx) (Symmetry)
• ∀x∃y(xCy) (Seriality)
• ∀x(∃y(xCy) ⇒ ∃z(xCz & ∀w(xCw ⇒ w ≤ z)) (Convergence)
It seems natural that (in)compatibility should be serial and symmetric

(for some reasons why, see Restall (1999), Berto (2015)); we’ll get back
to Symmetry when we discuss our interpretation via dynamical systems,
though). What convergence essentially does is guaranteeing that each
world has a maximally compatible mate if it is compatible with anything
at all. If one buys these conditions, each x ∈ W will have a maximal
compatible mate x∗, and (¬) becomes equivalent to
(¬∗) M,x ⊩ ¬φ ⇔ M,x∗ ⊮ φ.

Say a star-ordered model is an ordered model satisfying Symmetry,
Seriality, and Convergence. One can also take the star operation as
primitive: a star model, then, is M = (W, 0, R, ∗, i), with the truth
conditions for negation given directly as per (¬∗). The above story,
however, shows how the star operation arises naturally from compatibility
and order: see again Restall (1999).

The relevant logic BM is sound and complete with respect to star
models (Priest and Sylvan 1992). If we additionally impose the condition
x = x∗∗, we get Routley star models, with respect to which the logic
B is sound and complete (Priest and Sylvan 1992). Such an involutive
(or period-two) star operation was used in the original (R. Routley and
R. Meyer 1972a; R. Routley and V. Routley 1972) to give the semantics
for negation—called the Routley star.

One may not like the idea that the base world, where logical truth
and validity are recorded, could be inconsistent or incomplete. In the
Routley star setting, one can accommodate the worry by stipulating that
0* = 0, which ensures that negation behaves classically at 0: exactly one
of φ and ¬φ will be true there, for all φ. This gives a logic stronger than
B, but all the counterexamples to the paradoxes still go through.

Making sense of the ternary R is way more work.
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5 The Ternary Relation
A number of interpretations understand the points in W as states of or
conduits for information, and the ternary relation in terms of information
transmission (Beall et al. 2012; Golan 2023; Mares 2004; Restall 1995;
Tedder 2021; Urquhart 1972). Both Restall and Mares took the points to
represent situations in the sense of Barwise and Perry (1983)’s situation
semantics. These are information-supporting structures that need not be
maximal, as they can fail to support either positive or negative informa-
tion about certain topics. The current meteorological situation in Oxford
does not support the information that it’s raining in New Jersey, nor the
one that it isn’t raining there. Situations can also be taken as abstract
objects representing logical impossibilities and have been developed by
Barwise and Seligman (1997) into a general theory of information flow in
distributed systems. The partial ordering in enriched models is then un-
derstood as information-inclusion: ‘x ≤ y’ means that all the information
supported by x is also supported by y. One may also have an (idempotent,
commutative, associative) operation of fusion, ⊕, the pooling together
of pieces of information, and define information-inclusion out of it, the
usual way, as x ≤ y =df x⊕ y = y.

Then one can read ‘Rxyz’ as saying that x is a situation that acts as
a conduit of information, allowing it to be transmitted from situation y
to situation z. This makes sense of the truth conditions for the relevant
conditional, as per (→): when x allows the information that φ → ψ to
flow from y to z, and y supports the information that φ, then z should
support the information that ψ.

Here is one thing ‘Rxyz’ cannot mean in the information-theoretic
reading (Dunn and Restall 2002; Priest 2008): it cannot just mean that
z is or includes the information obtained by pooling together x and y,
i.e., x ⊕ y ≤ z. This would make ψ → ψ true at all points x (if Rxyz
and y ⊩ ψ, then y ≤ x ⊕ y ≤ z, so, by preservation, also z ⊩ ψ), hence
paradox 3 is validated. This complicates the informational interpretation
of R: ‘x allows information to flow from y to z’ cannot be understood
in the plain mereological terms that fusing y to x yields a result in z,
since preservation must fail: Rxyz cannot imply that y is informationally
contained in z. As Priest (2008, p. 207) has it: ‘The problem now is to
make sense of the metaphor of information flow—hardly a transparent
one.’

To show how R makes sense in our setting in spite of failures of
preservation, let us now introduce dynamical systems.5

5For an early version of this idea, see Hornischer (2021, sec. 3.6.2).
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6 Dynamical Systems, Informally
A dynamical system consists of a state space and a dynamics on it. The
former is the collection of states that the system can be in; the latter
represents how the system evolves from one state to another (List and
Pivato 2021). Lots of things can then be seen as a dynamical system:
gases in motion, agents in financial markets, computers. Let’s consider a
standard textbook example (e.g., Strogatz 2015, sec. 2.3/10.2; May 1976).

Example a (Running example: population growth). A population of
insects breed seasonally without overlapping generations. A state of this
system is described by the number of insects that the system has in this
state. It will be convenient to describe the state by the percentage of the
maximal population: a state is given by a number x between 0 and 1.
We want to understand how this evolves over time, i.e., over the seasons.
When there are few insects (x is close to 0), there will be more in the next
generation: the available resources plentifully support the few. However,
when there are many insects (x is close to 1), there will be fewer in the
next generation: the available resources don’t support the many. To
model this, we look for a function T that, when given the current state x
as input, describes the population T (x) in the next season. We will do
this in the next section.

Dynamical systems can have a discrete or continuous state space. Our
population example with absolute numbers as states would be discrete,
but with the percentages as states it is continuous. Systems can be time-
discrete, when they develop in discrete time steps, or time-continuous,
when subject to continuous change. Our population example is time-
discrete. And systems can be deterministic, when each state has a unique
successor; non-deterministic or stochastic, when that’s not the case. The
implicit assumption in modeling our population dynamics as a function is
that it is deterministic: for every current state x, there is a unique next
state T (x).

Let’s end this section with three more examples.
First, a gas in a box can be a time- and state-continuous deterministic

dynamical system: a state of the system is given by the position and
momentum of each gas molecule in the box. The dynamics is given by the
laws of motion of classical mechanics. This type of example is extremely
general: differential equations are the language of physics, chemistry,
engineering, and many other sciences, and any solution to a differential
equation yields such a dynamical system (for details, see Teschl 2012,
sec. 6.2).

Second, Turing machines are time- and state-discrete dynamical sys-
tems: a state of a Turing machine at a time is given by what’s written
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on its tape, the part of the tape the machine is scanning at the time,
and its internal state. The dynamics is given by the program of the
machine, fixing the next state (or one of the possible next states, if it’s
non-deterministic) given what the machine is reading at the current state
and its current internal state.

Third, training artificial neural networks is a time-discrete, state-
continuous dynamical system. A state describes the weights of all the
connections in the network. And the new set of weights is computed, for
example, from a batch of data points: the network’s output on the data
is compared to what should be the correct output according to the data;
then the weights are adjusted (using the backpropagation algorithm) so as
to provide outputs closer to the correct ones. Since the batch is sampled
randomly, the dynamics is non-deterministic.

7 Dynamical Systems, Formally
There are many formal notions of a deterministic system, differing in
mathematical structure and dynamics. They all are so-called (left) actions
α of a monoid (M,+, 0) on a set X. Here X describes the state space of
the system, the monoid describes the notion of time, and the function
α : M × X → X describes the dynamics: ‘If the system is in state
x ∈ X now, then after time m ∈ M , the system is in state α(m,x)’
(so one requires α(0, x) = x and α(m + n, x) = α(m,α(n, x))). A time-
continuous system would use as monoid the real numbers (R,+, 0), while a
time-discrete system would use the natural numbers (N,+, 0). In the time-
discrete case, the dynamics is already described by the ‘1-step dynamics’
T = α(1, ·) : X → X mapping each state to the next state, because

α(0, x) = x, α(1, x) = T (x), α(2, x) = T (T (x)), . . . .

If the state space X is continuous, one formalizes this by assuming it
to be a topological space or a probability space and by requiring the
dynamics to preserve this additional structure (i.e., being continuous or
measure-preserving, respectively).

Among the main classes of systems that dynamical systems theory
studies are the so-called topological systems. These are state-continuous
and time-discrete deterministic systems. Historically they became impor-
tant through the work of Poincaré because they allowed for the analysis
of solutions to differential equations also in absence of explicit solutions
(which is most often the case). The formal definition is taken from the
excellent textbook by de Vries (2014, p. 1). The precise definitions of
mathematical terms are added as footnotes, but an intuitive understanding
should be enough for us.
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Definition 1. A topological system is a pair (X,T ) where X is a Hausdorff
topological space and T : X → X is continuous.6 Sometimes it is
additionally assumed that X is compact and that f is bijective—if this is
the case, we call (X,T ) a standard topological system.

Here is what this formal definition looks like for our running example.

Example b (Example a continued). Our example system is a population
of insects. Its states are given by numbers x between 0 and 1 describing
the percentage of the maximal population. So the state space is the unit
interval X := [0, 1] with its usual topology. For the function T : X → X
describing the dynamics we required an increase when x is small and a
decrease when x is large. Famously, the logistic map does this:

T (x) := 2x(1 − x).7

This is visualized in figure 3: For small x (with x < 0.5), the population
will increase (T (x) is above the dotted line), unless there weren’t any
insects to start with (i.e., x = 0, in which case T (x) = 0). For large x
(with x > 0.5), the population will decrease (T (x) is below the dotted line).
For x = 0.5, the population remains stable: T (x) = x (the population is
in equilibrium). For the extreme points x = 0 (no population), we also
have T (x) = x; and for x = 1 (maximal population), we have T (x) = 0
(no population). So x = 0 and x = 0.5 are the only fixed points (i.e.,
points x with T (x) = x). But only x = 0.5 is attracting: any 0 < x < 1
converges under T to 0.5. Thus, we have a clear idea of the long-term
dynamics.

To explicate when a perturbation conditional is true at a state, we
need to make some more structure explicit: (1) what it means to perturb
the system, and (2) what it means that a property holds at a state or
doesn’t hold (i.e., the state is incompatible with it). We call the resulting
structure an interactive topological system:

Definition 2. An interactive topological system S is a tuple (X, x0, T, A,
P, C, i) where:

6A topological space is a set X together with a set τ of subsets of X that contains
X and the empty set ∅ and is closed under finite intersection and arbitrary union. The
elements of X are called points and the elements of τ are called open sets. Complements
of open sets are called closed. A topological space is Hausdorff if, for any two distinct
points x and y in X, there are disjoint open sets U and V with x ∈ U and y ∈ V .
We often only refer to the space by X and take τ to be given by context. A function
f : X → Y between two topological spaces is continuous if for any open set V of Y ,
the preimage f−1(V ) = {x ∈ X : f(x) ∈ V } is an open set of X.

7Instead of 2, we could choose another constant 0 ≤ r ≤ 4. For r ≤ 2, the dynamics
is quite stable (which we choose here to keep things simple), but for values r > 2 it
can become mesmerizingly complex (May 1976).

13



x

T

0 10.5

1

0 0.5 1

Figure 3: The dynamics of the logistic map on the unit interval.

• X is a Hausdorff topological space: the state space.
• x0 ∈ X is a state: the initial state.
• T : X → X is a continuous function: the dynamics.
• A is a topological space: the space of perturbations.
• P : X × A⇒ X is a multifunction (i.e., a function that maps each

element of its domain X × A to a subset of its codomain X): the
perturbation function. We require F to be ‘appropriately continuous’
which here means closed-valued, upper hemicontinuous, and with
closed domain.8

• C ⊆ X2 is a binary relation: the compatibility relation.
• i : X × At → {0, 1} is a function: the interpretation function.

We call S standard if X is a compact Hausdorff space and T is bijective
(hence a homeomorphism). We call S simplified if A = X. A positive
interactive topological system is defined in the same way but without the
compatibility relation.

Let’s explain the parts of the definition in turn and then consider it
for our running example. The part (X,T ) just describes the underlying
topological system. Distinguishing a state x0 ∈ X is typical in dynamical
systems theory: it fixes the current state of the system, starting from
which it is analyzed (e.g., the initial condition in an initial value problem
whose solution is the dynamical system).

The interpretation function i allows us to speak about properties of
the system: In our insect population system, consider p representing ‘The
population is highly, but not extremely populated’. So p is true at a state

8Recall from set-valued analysis (Aliprantis and Border 2006, ch. 17) that a
multifunction F : X ⇒ Y on topological spaces X and Y is closed-valued if each
F (x) is a closed subset of Y , and F has a closed domain if {x ∈ X : F (x) ̸= ∅} is a
closed subset of X. Finally, F is upper hemicontinuous if, for all x ∈ X and open
V ⊆ Y with F (x) ⊆ V , there is an open U ⊆ X with x ∈ U and, for all x′ ∈ U , we
have F (x′) ⊆ V . To apply this to the perturbation function P , we take the product
topology on X ×A (the least topology where all U × V are open for U ⊆ X open and
V ⊆ A open).
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x according to i (i.e., i(x, p) = 1) iff, say, 0.7 < x < 0.9, i.e., the insect
population is higher than 70% of the maximal population but below 90%.

The compatibility relation is to express what it means that the system
currently does not have property p. Following section 4: not having p
means not being compatible with any state having p. If we take C to be
the identity relation, we can recover the classical reading where state x
not having property p means i(x, p) = 0. But, for a more constructive
reading, we can also take C to be indistinguishability by the available
measurements. Then state x does not having property p iff we can
conclusively show that the system currently does not have p, because p
fails in all the states that, based on our observations, the system could
be in. For example, in our insect population, we can plausibly only
measure the number of insects up to a 5% error of measurement, so x
does not having property p iff for no ϵ with −0.05 ≤ ϵ ≤ +0.05, we have
0.7 < x + ϵ < 0.9 (i.e., x ≤ 0.65 or x ≥ 0.95). There are yet further
options: e.g., x is compatible with y if y can be obtained from x with a
small perturbation, which need not even be reflexive or symmetric. So
generally we just assume C to be a binary relation.

Finally, the perturbation function says: if the system is in state x ∈ X
and perturbation a ∈ A acts on the system from the outside, it will perturb
the system into a state in P (x, a). In our running example, a could be
the action of adding one million insects which, say, is 10% of the maximal
population. The reason why we don’t assume P to be a function but only
a multifunction is that perturbations usually are not infinitely precise:
if we apply perturbation a to the system in state x, we usually cannot
guarantee a unique resulting state P (x, a) but only a ‘ballpark’ of states
P (x, a) ⊆ X. In the example, it wouldn’t be feasible to count that it was
precisely 10% of the maximal population that we added, it could also have
been 1% more or less, so P (x, a) = {y ∈ [0, 1] : x+ 0.09 ≤ y ≤ x+ 0.11}.

We should expect the perturbations to interact with the spatial struc-
ture of the system: If we change the current state x and/or perturbation
a by a bit, then the resulting states P (x, a) should also only change a bit.
If P was a function, this would precisely be achieved by requiring P to
be continuous. But since P is a multifunction, the next best thing is to
assume it to be appropriately continuous in the technical sense above.9

9Are perturbations just any kind of state-change, a helpful referee asks? We think
it’s not up to the formal semantics to further constrain what counts as a perturbation.
Even a fixed dynamical system will be amenable to very different sorts of perturbation
(see, e.g., example d vs. e below). What’s up to the semantics is to represent the
structural properties shared by all sorts of perturbation: these are the conditions
we impose on P . This is analogous to Kripke models: They represent the informal
idea that y is a possibility for x as a binary relation Rxy. Again, this captures the
structural properties that any instance of the informal notion shares, but it does not
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Requiring the system to be simplified is motivated thus: although
perturbations are not states, often we can identify the two (Leitgeb 2005).
For example, the perturbation of adding 10% of the maximal population
can be identified with the state x = 0.10.

In sum, here is our running example as an interactive topological
system.

Example c (Example b continued). In our insect population system, we
have:

• The state space X = [0, 1] of possible percentages of the maximal
population.

• The initial state, say, x0 = 0.6.
• The population dynamics T : X → X given by T (x) = 2x(1 − x).
• The space of perturbation A := [0, 1] describing how many insects

we externally add to the population, measured in percent of the
maximal population.

• The perturbation function P : X × A⇒ X given by

P (x, a) =
{
y ∈ [0, 1] : x+ a− 0.01 ≤ y ≤ x+ a+ 0.01

}
.

• The compatibility relation xCy given by |x− y| ≤ 0.05.
• We consider p representing ‘The population is highly populated’ and
q representing ‘The population is healthy’, and no further properties.
So we define the interpretation function i : X × At → {0, 1} as
(given a state x ∈ X): i(x, p) = 1 iff 0.7 < x < 0.9, and i(x, q) = 1
iff 0.4 < x < 0.6; and i(x, r) = 0 for all other atomic sentences r.

8 Logic of dynamical systems: interpreting
relevant models

We can now provide a semantics for perturbation conditionals as well as
for the other connectives ∧,∨,¬; so we can speak of a logic of dynami-
cal systems.10 The intuitive interpretation goes thus: atomic sentences
represent basic properties of the system; as for the complex properties:

• The property φ∧ψ holds at a state iff both the property φ and the
property ψ hold at that state.

• The property φ ∨ ψ holds at a state iff either the property φ or the
property ψ holds at that state.

answer which worlds exactly are possibilities for, say, our actual world.
10 For other logics of dynamical systems, see, e.g., Leitgeb (2005), Kremer and Mints

(2007), Platzer (2012), or Fernández-Duque (2012).
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• The property ¬φ holds at a state iff φ fails at all states that are
compatible with that state (e.g., observationally indistinguishable).

• The property φ⇝ ψ holds at a state iff whenever we perturb the
system from that state into a φ-state, it will evolve into a ψ-state.

• (We might add: the property φ → ψ, which holds globally iff any
φ-state also is a ψ-state.)

For our insect population, we want to know if the conditional p⇝ q is
true in the current state of the population: that if we perturb the system
to be highly populated, the system will recover again, i.e., evolve into a
state where the population is healthy.

To get an explication of this intuitive semantics, we interpret our
system as a relevant model and use its formal semantics. Naturally, the
worlds of the model are the states of the system (though we add one
special base world below). The interpretation function is that from the
system, and world-incompatibility is state-incompatibility.11 So atomic
properties and ∧,∨,¬ are straightforwardly interpreted. The trick for
⇝ is, as mentioned in the introduction, to read ‘Rxyz’ as: there is a
perturbation moving the system from x into state y from which it evolves
to z. Then the above intuitive meaning of φ ⇝ ψ is just the relevant
conditional:

x ⊩ φ⇝ ψ iff ∀y, z ∈ X : Rxyz & y ⊩ φ ⇒ z ⊩ ψ.

This reading of R is made precise as:

Rxyz ⇔ ∃a ∈ A : y ∈ P (x, a) and lim
n→∞

T n(y) = z,

where the second condition means that the sequence y, T (y), T (T (y)), . . .
(which is known as the orbit of y) converges in the space X to z.12

It remains to specify the base world, which is to satisfy the normality
condition (1). The idea is that the base world represents the state of

11Once (in)compatibility is understood as a relation between states of dynamical
systems, should we (still) accept Symmetry? Perhaps (thanks to a helpful referee for
this) transforming a into b (changing hydrogen and oxygen into water) is sometimes
feasible, while transforming b back into a (water into hydrogen and oxygen) is more
work. One of us has argued in print (Berto 2015) that the idea that (in)compatibility
may not be symmetric imports intuitions from the asymmetry of causal processes; and
it’s not clear that these should be embedded in a general semantics for negation. But
if they should, not much hinges on that. We’ll then have relevant logics where Double
Negation Introduction fails (a well-known effect of the failure of Symmetry: see Restall
1999, Dunn 1993, Simonelli 2024). DNI will at most hold in a restricted class of models
where compatibility is symmetric, just as the Brouwerische axiom B of normal modal
logics only holds in a restricted class of Kripke frames where accessibility is symmetric.

12A sequence x0, x1, x2, . . . of points in a topological space X converges to a point y
if, for all open sets U with y ∈ U , there is N such that for all n ≥ N , we have xn ∈ U .
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the observer of the system. So it is an additional state, 0, which is
different from all the system states. But how should we extend the
ternary relation, compatibility, and interpretation to this observation
state 0? The ternary relation should represent the relation ‘the observer
looks at system state x’, so it models the observer considering a specific
system state—or ‘situating’ themselves in the state space. As stated,
this is a binary relation that holds between 0 and any system state x,
but formally we can cast it as a ternary relation by requiring R0xy to
hold precisely if x = y. Conveniently, this is exactly in line with the
normality condition. Compatibility and interpretation should be given by
the corresponding compatibility and interpretation of the initial state of
the system. This is because, as mentioned, the initial state is the current
state of the system from which it is analyzed, much like the actual world
in possible world reasoning. So the observer takes the compatibility and
interpretation of the initial state as their ‘beliefs’ about the actual state
of the system.13

An upshot is that, when evaluating the conditional φ ⇝ ψ at the
observer’s state 0 (rather than a system state), it is true iff any φ-state
is a ψ-state—so we get the global conditional mentioned in the intuitive
semantics (modulo including the observer’s state to the system states).
Thus, we make sense of the distinction in the Routley-Meyer semantics
between the base world and the non-base worlds—and the corresponding
distinction between a global and a local reading of the relevant conditional.
Here, it is understood as the distinction between the observer’s state and
the system states. Correspondingly, the observer takes a global perspective
at the whole system and is the one requiring truth-preservation in the
definition of consequence, while at the system states the conditional gets
the local ‘perturbation plus evolution’ reading.

Figure 4 summarizes these ideas, which we now formalize in the
following definition (further explanations afterward).

13An alternative would be to not take 0 to be a new state but the initial state of
the system. Then, to satisfy the normality condition, we adjust Rxyz: if x ̸= x0, it
gets the above interpretation, but if x = x0, it is defined as y = z. This added clause
represents the special status of the initial state as the state from which the system is
analyzed. We can also make sense of it in terms of perturbation: We require that (a)
there are enough perturbations so that every state can be reached by perturbation
from the initial state, and (b) if we reach a state by perturbation from the initial
state, then we do not consider any further evolution of the dynamics to evaluate the
perturbation conditional. It turns out that our desired soundness and completeness
result also works with this alternative. An advantage of this alternative is that it is
more parsimonious since it doesn’t introduce a new state, but—as helpfully pointed
out by a referee—a disadvantage is that not all system states have the ‘perturbation
plus evolution’ interpretation.
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relevant model dynamical system
worlds W state space plus the state of the observer
base world 0 the state of the observer
ternary relation R limit behavior after some perturbation (for system states) /

accessing a state (for the observer state)
normality condition observer considering a system state
compatibility C state-compatibility (for system states) / compatibility with

initial state (for observer state)
interpretation i properties of the system (for system states) / properties of

the initial state (for the observer state)

Figure 4: Interpreting a dynamical system as a relevant model.

Definition 3. Let S = (X, x0, T, A, P, C, i) be an interactive topological
system. Define the relevant model M(S) = (WS, 0S, RS, CS, iS) induced
by the interactive topological system S by:

• WS := X ∪ {X}
• 0S := X
• For x, y, z ∈ WS, define RSxyz by:

– Either x = 0S and y = z,
– or x, y, z ∈ X and ∃a ∈ A : y ∈ P (x, a) and limn T

n(y) = z.
• As a helpful function, define ·̂ : WS → X by

x̂ :=
x if x ∈ X

x0 if x = 0S.

• For x, y ∈ WS, define xCSy by: x̂Cŷ
• For x ∈ WS and p ∈ At, define iS(x, p) := i(x̂, p).
• If X carries a partial order ≤, define the partial order x ≤S y on
WS by: either y ∈ X and x̂ ≤ y or y = 0S and x = 0S.

We formally identify the observer state 0S with the whole state space
X itself. This represents the observer looking at the whole system, and
it has the desired consequence that 0S is a new state, i.e., not in X (by
the foundation/regularity axiom in set theory). The ternary relation RS

combines the ‘perturbation plus evolution’ for system states with the
‘looking at a state’ for the observer. Finally, the ·̂ function situates the
observer in the state space: any system state x ∈ X is already situated,
and the observer 0S situates themselves at the initial state x0. With this,
we express the idea that compatibility and interpretation (as well as order,
if available) for the observer state is given by the corresponding notion
for the initial state of the system.
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Clause S as relevant model Intuitive semantics
x ⊩ p iS(x, p) = 1 property p holds at state x
x ⊩ ¬φ ∀y(xCSy ⇒ y ̸⊩ φ) property φ fails in all states compatible

with x
x ⊩ φ ∧ ψ x ⊩ φ and x ⊩ ψ both property φ holds at x and property

ψ holds at x
x ⊩ φ ∨ ψ x ⊩ φ or x ⊩ ψ either property φ holds at x or property

ψ holds at x
x ⊩ φ⇝ ψ ∀y, z(RSxyz & y ⊩ φ

⇒ z ⊩ ψ)
whenever we perturb the system from x
into a state y with property φ, it will evolve
into a state with property ψ

0S ⊩ φ⇝ ψ ∀y(y ⊩ φ ⇒ y ⊩ ψ) every φ-state is a ψ-state

Figure 5: Explicating the informal semantics by regarding the interactive
topological system S as a relevant model.

Figure 5 shows that the semantics we get when regarding the system
S as the relevant model M(S) indeed formalizes the intuitive semantics
for a logic of dynamical systems from the beginning of this section.14

Let’s illustrate this with our running example.

Example d (Example c continued). Let S be the interactive topological
system from example c modeling our population of insects. Let’s see
what the logic of this dynamical system looks like by regarding it as the

14 One can interpret relevant models also as time-discrete, possibly non-deterministic
dynamical systems, i.e., labeled transition systems (LTS). We confine this in a footnote
to not digress, but LTSs are an important general model of computing systems used
for model checking and concurrent computation (e.g. Baier and Katoen 2008; Winskel
and Nielsen 1995). A textbook definition of an LTS (Baier and Katoen 2008, p. 20)
is as a tuple (S,Act,→, In,AP,L) where S is a set of states, Act is a set of actions,
→⊆ S × Act × S is a transition relation (written x

a−→y), In ⊆ S is a set of initial
states, AP is a set of atomic propositions, and L : S ×AP → {0, 1} is a function. An
action a of an LTS is called idle if (1) for any state x, we have x a−→x, and (2) if x a−→y,
then x = y. Now this is reminiscent of the normality condition (1)! In fact, we have
the following observation: The positive relevant models (W, 0, R, i) can be viewed as
those LTSs (S,Act,→, In,AP,L) where

• S = Act. This is then regarded as the set of worlds W and → is the ternary
relation R. We write Rxyz for y x−→z.

• In is a singleton consisting of an idle action. This action is the base world 0,
and being idle precisely means x 0−→y ⇔ x = y.

• AP = At. So AP is the set of propositional atoms and L is the interpretation
function i.

To also treat negation, one might extend this by a compatibility relation; cf. asyn-
chronous transition systems (Winskel and Nielsen 1995). This provides an applied
interpretation of relevant models as particular LTSs, which are literally applied math-
ematical structures.
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relevant model M(S). Recall that we consider ‘The population is highly
populated’ (p) and ‘The population is healthy’ (q).

First, let’s consider again the sentence p⇝ q: saying that if we highly
populate the system, it will recover. We claim that it is true at any
system state x. Indeed, given states y and z with RSxyz and y ⊩ p, we
need to show z ⊩ q. Since RSxyz and x is a system state (i.e., not the
observer state), the system in particular evolves from y to z. Since y ⊩ p,
we have 0.7 < y < 0.9, so—from what we know about the dynamics—the
system will evolve from y to the attracting fixpoint 0.5, so z = 0.5, and
hence z ⊩ q, as needed.

Second, let’s consider the sentence p ⇝ p: saying that if we highly
populate the system, it will evolve into a highly populated state. Given
the preceding reasoning, we expect this to likely be false. Indeed, consider,
e.g., the initial state x0 = 0.6. Let’s perturb the population by a = 0.2.
So, say, y = 0.81 ∈ P (x0, a). From there, the system converges to z = 0.5.
Hence RSx0yz and y ⊩ p, but z ̸⊩ p, so, indeed, x0 ̸⊩ p⇝ p.

Third, now consider the sentence q ⇝ (p ⇝ p). This is an instance
of paradox 3, and we would like to see that our system indeed avoids it.
So we show that 0S ̸⊩ q ⇝ (p⇝ p). Indeed, with x0 = 0.6 as before, we
have RS0Sx0x0 and x0 ⊩ q, but x0 ̸⊩ p⇝ p.

Finally, we note that our interpretation also extends to ordered relevant
models: Let’s define an interactive topological system S with a partial
order ≤ on its state space X to be ordered (resp., star-ordered) if the
induced relevant model M(S) with the order ≤S is ordered (resp., star-
ordered). An example is the following version of our population of insects.

Example e. We change the interactive topological system S from our
population of insects example c: We redefine the perturbation function
P : X ×A⇒ X as P (x, a) = {y ∈ [0, 1] : x+ a ≤ y ≤ 0.55}. So when we
perturb, we can only support the insect population in growing more quickly
(e.g., by providing ideal circumstances), but not much beyond the point it
can reach on its own—we can, so to speak, only work with Nature but not
against it. We define compatibility as reachability through perturbation,
i.e., xCy iff there is a with y ∈ P (x, a), or, equivalently, x ≤ y ≤ 0.55.
And we consider p representing ‘The population is above equilibrium’
(i(x, p) = 1 iff x > 0.5), and q representing ‘The population is not under-
populated’ (i(x, q) = 1 iff x > 0.25). Then S is an ordered interactive
topological system.15 And we still have, e.g., 0S ̸⊩ q ⇝ (p⇝ p), because

15For this, use: If S = (X,x0, T, A, P,C, i) is an interactive topological system and
≤ is a partial order on X, then a sufficient condition for S to be ordered is (a) atomic
heredity (if i(x, p) = 1 and x ≤ y, then i(y, p) = 1), (b) antitonicity (if yCz and
x ≤ y, then xCz), (c) initial non-perturbability (if x0 ≤ x, then, for all a, we have
P (x, a) = ∅), (d) order-reversing perturbation (if x ≤ y, then P (y, a) ⊆ P (x, a)).
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x := 0.5 ⊩ q but x ̸⊩ p ⇝ p since, by permuting with, e.g., a = 0.01,
we can choose some y ∈ P (x, a) = [0.51, 0.55], from which the system
converges to z = 0.5, so RSx0yz with y ⊩ p but z ̸⊩ p.

9 Soundness and completeness
Let us take stock: we now have a semantics for perturbation conditionals
and, more generally, a logic of dynamical systems; and we also have an
applied interpretation for some of the abstract models of relevant logic.
But, to deliver on the promised contributions, two things are still missing:

1. We want to fully understand the logic of perturbation conditionals
and dynamical systems: we want to characterize this logic by its
sound argument schemes and, ideally, by identifying it as a well-
known logic.

2. We want to know that our applied interpretation is complete: so far
we know that some relevant models come from dynamical systems,
but we would like to know that, up to logical equivalence, all relevant
models are of this form.

We now bring both points home with one theorem, proved in the appendix.
Let’s first state the theorem and then explain how it delivers:

Theorem 4. For any relevant model M , there is a simplified interactive
topological system S whose induced relevant model is equivalent to M , i.e.,
their base worlds make true exactly the same sentences. This remains
true when adding ‘positive’, ‘ordered’, and ‘star-ordered’. And if M is
finite, S can be chosen to be standard.16

This precisely delivers point 2: not only do dynamical systems induce
relevant models, but all relevant models come, up to equivalence, from
dynamical systems. As for point 1: since all relevant models are governed
by the argument schemes of the positive basic relevant logic B+ (see
figure 2), they also are valid for dynamical systems. For example, axiom
(A5) yields the following valid argument scheme for systems:

16Comments on versions of this result: (1) As mentioned, we could choose the base
world as the initial state. (2) One could investigate different notions of (stable) limit
behavior, other than plain convergence in defining RS , e.g., z is a limit point of the
orbit of y (in which case the result still works). (3) We could also drop the assumption
on systems that the perturbation function is appropriately continuous (i.e., is only a
multifunction). (4) The theorem implies that relevant logic cannot ‘see’ the difference
between non-deterministic systems (interpreting M as an LTS as in footnote 14) and
deterministic systems (the system S). This is to be expected since, intuitively, this
difference need not be observable: a state could have two observationally identical
successor states.
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Given a state x, assume (a) whenever we perturb x into a
φ-state, it will evolve into a ψ-state, and (b) whenever we
perturb x into a φ-state, it will evolve into a χ-state. Then
whenever we perturb x into a φ-state, it will evolve into a
φ ∧ χ-state.

In logical terminology this means that the logic B+ is sound for dynamical
systems. However, to fully understand the logic of dynamical systems, we
also want a complete description of the sound argument patterns: that
anything that is true about all dynamical systems also can be derived
from the few sound axioms and rules—which generally is much harder
to achieve! It says that these few axioms and rules not only describe the
general laws of dynamical systems (soundness), but all general laws of
dynamical systems are already described by them (completeness). This is
what theorem 4 delivers: different relevant logics can be characterized by
different classes of abstract relevant models which, by theorem 4, hence
further correspond to different classes of dynamical systems. Concretely,
for the example of B+, we have the following.

Corollary 5. The logic of positive interactive topological systems is the
positive basic relevant logic B+: For a set of formulas Σ and a formula
φ, we have that φ is derivable from Σ in the logic B+ iff, in any positive
interactive topological system S, the formula φ is true at the observer
state 0S whenever all formulas of Σ are true at 0S.

10 Stronger relevant logics
So we have delivered the two main contributions of this paper and thus
established a bridge between dynamical systems and relevant logics. We
did so for a broad class of dynamical systems and a broad class of relevant
models. This was to include all potential systems and provide an applied
semantics for all relevant models. The obvious next item in an agenda
for future work is: how do interesting subclasses of systems correspond to
stronger relevant logics?

Relevant logicians have come up with systems stronger than B, some
of which have been applied for various purposes: e.g., to model com-
mon knowledge (Punčochář and Sedlár 2021) or justification (Standefer
forthcoming), as underlying logics for non-classical formal theories of
arithmetic (R. K. Meyer 1976), formal semantics for languages expressing
their own transparent truth predicates (Beall 2009), set theories with
unrestricted comprehension principles (R. Routley 1979; Weber 2021).

What we need is a correspondence theory. This is well-known from
modal logic (Blackburn, Rijke, and Venema 2001): one starts with the
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basic normal modal logic K, and shows that it is sound and complete
with respect to Kripke models (W,R, i) which don’t have any constraints
on the binary accessibility relation R. Then one identifies constraints on
R: e.g., reflexivity or transitivity. And one shows that these constraints
correspond to formulas of the logic in the sense that they are valid on the
so constrained class of models: e.g., □φ → φ or □φ → □□φ, respectively.
This helps to find and illuminate the intended applied interpretation of
the logical operators by relating structural to logical intuitions. Now a
correspondence theory for relevant logic also has been developed (Priest
and Sylvan 1992; Restall 1993, 2000, sec. 11.5). In the remainder of this
section, we start to thus investigate the logic of subclasses of dynamical
systems.

In relevant correspondence theory, one gets relevant logics stronger
than B by imposing constraints on the ternary R, which then validate
more principles than those of B. However, the constraints are often more
cumbersome than in modal logic, and they may involve the Routley star
∗ and/or the hereditary ordering ≤. Examples from the literature (taken
from Priest (2008, ch. 10), notation adjusted) include:

1. If Rxyz, then Rxz∗y∗.
2. If there is a w ∈ W such that Ruvw and Rwxy, then there is a
z ∈ W such that Ruxz and Rvzy.

3. If there is a w ∈ W such that Ruvw and Rwxy, then there is a
z ∈ W such that Rvxz and Ruzy.

4. If Rxyz, then there is a w ∈ W such that Rxyw and Rwyz.
5. If Rxyz, then there is a w ∈ W such that x ≤ w and Rywz.

These validate, respectively:

a. (φ → ¬ψ) → (ψ → ¬φ) (Contraposition)
b. (φ → ψ) → ((ψ → χ) → (φ → χ)) (Suffixing)
c. (φ → ψ) → ((χ → φ) → (χ → ψ)) (Prefixing)
d. (φ → (φ → ψ)) → (φ → ψ) (Contraction)
e. (φ → ((φ → ψ) → ψ) (Assertion)

The logic with a–c on board is called TW. With d–e added, it’s known as
R: possibly the most established relevant logic. It can be proved to have
the Variable Sharing Property, so all weaker systems have it, too (Priest
2008, pp. 205–6).

Do these conditions make sense in the dynamical systems interpreta-
tion? Let S = (X, x0, T, A, P, C, i) be an interactive topological system.
We may assume it’s ordered by ≤, to talk about condition 5. To fix some
useful notation, write x 99K y for ∃a ∈ A : y ∈ P (x, a), i.e., the system in
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state x can be perturbed to state y. Write x → y for limn T
n(x) = y, i.e.,

the system in state x will evolve to state y. Some reasonable assumptions
on perturbability are the following (explanations afterward):

i. If x 99K y and y → z, then x 99K z. (99K→⇒99K)
ii. If x → y and y 99K z, then x 99K z. (→99K⇒99K)
iii. If x 99K y and y 99K z, then x 99K z. (99K99K⇒99K)
iv. If x → y, then y 99K x. (→⇒L99)
v. If x 99K y, then x ≤ y. (99K⇒≤)
vi. x 99K x. (=⇒99K)

Here, i and ii say that first perturbing and then converging, or vice versa,
can also be realized by one perturbation. iii says that perturbability is
transitive (e.g., by chaining the perturbations).17 iv says that convergence
can be reversed by perturbation. v says that we can only perturb along
the order of the system. And vi modestly demands that perturbability
be reflexive: that there is the trivial perturbation of not doing anything.

As we’ll now see, these assumptions go a long way towards validating
the model conditions 1–5 for the relevant logic R. For reasons of space,
we won’t discuss condition 1 as it only has to do with negation and hence
compatibility, whereas our prime concern is with the conditional and
hence the ternary relation. And we omit looking separately at the base
world. The aim here is to illustrate ideas, not formal correctness.

For condition 2, consider figure 6.18 The antecedent of the implication
shows that RSuvw (i.e., u 99K v and v → w) and RSwxy (i.e., w 99K x
and x → y). Using z := y, we claim RSuxz and RSvzy: indeed,

• u 99K x because u 99K v → w 99K x implies, by i, u 99K w 99K x,
which, by iii, implies u 99K x

• x → z by assumption
• v 99K z because v → w 99K x → y implies, by ii, v 99K x → y,

which, by i, implies v 99K y, and
• z → y because, since limn T

n(x) = y, continuity implies T (y) = y,
so limn T

n(y) = y.

We argue similarly for condition 3. For condition 4, if RSxyz, choose
w := z: then, trivially, RSxyw, and, since y → z, iv implies, w 99K y,
so RSwyz. For condition 5, if RSxyz, choose w := y: since x 99K y, v
implies x ≤ w, and we have y 99K w (by vi) and w → z (by assumption),
so RSywz.

17This is the first step toward a monoid/group structure on the set of perturbations
A, so one can speak—in the mathematical sense—of it acting on the state space X.

18Much inspired by the notation of Priest (2008, p. 194).
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Figure 6: Validating the suffixing condition in dynamical systems.

11 Conclusion
We have shown that dynamical systems provide a natural interpretation
for the semantics of relevant logic. Then relevant logic, conversely, pro-
vides the tools for reasoning about dynamical systems, in particular by
capturing, via the logical validities involving the relevant conditional, the
laws governing the systems.

Further work should continue section 10: investigating the applied
semantics for restricted classes of dynamical systems and correspondingly
stronger relevant logics. Similarly, one may ask which relevant logics can
be realized over a particular class of systems (e.g., edge shifts, ergodic sys-
tems, etc.) or maybe even in a single system (say a continuous dynamics
on the real line). Another question is whether the two constructions from
systems to models and back can be seen as category-theoretic functors—
maybe even adjoint ones. A further exciting avenue is to explore if other
relevant connectives like fusion or the Ackermann truth constant (Stande-
fer 2022) and the related linear logic (Allwein and Dunn 1993) can be
given a dynamical system interpretation—thus also providing a richer lan-
guage for systems. Moreover, one can investigate a counterfactual version
of our relevant conditional (Mares and Fuhrmann 1995) by considering
the smallest or minimal—rather than any—perturbation rendering the
antecedent true.19

19Many thanks to two anonymous referees who provided detailed comments that
improved the paper. For helpful discussions, we are also grateful to Hannes Leitgeb and
the audience of the Work in Progress Talk Series at the Munich Center for Mathematical
Philosophy, LMU Munich. Franz Berto’s research is funded by a Leverhulme Trust
Research Project Grant RPG-2023-236, What If...? Knowing by Imagining [WIKI]:
the Logic and Rationality of Imagination. Part of Levin Hornischer’s work was done
within the project ‘Foundations of Analogical Thinking’ (Project No. 322-20-017)
of the research program ‘PhDs in the Humanities’, financed by the Dutch Research
Council (NWO).
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Appendix: Proof of theorem 4
Given a relevant model M , we build the interactive topological system
S = S(M), whose induced relevant model is equivalent to M , by using
the perspective on relevant models as LTSs (footnote 14) and the toolbox
of symbolic dynamics (Lind and Marcus 1995).

We think of Rxyz in M as a transition from state y to state z with
label x, written y

x−→z. We call y the starting state of Rxyz and z the
ending state of Rxyz. If the starting states and the ending states match,
we can chain together transitions to obtain a path (or trajectory):

. . .
x−2−−→z−2 = y−1

x−1−−→z−1 = y0
x0−→z0 = y1

x1−→z1 = y2
x2−→ . . . ,

where the underlined arrow denotes the time step 0. Formally, a two-sided
infinite path (or just path) in M is a function t : Z → R such that, for all
n ∈ Z, the ending state of t(n) is identical to the starting state of t(n+ 1).
(Mnemonic: t as in trajectory.)

Some useful terminology: For x ∈ W , write x for the path

. . .
0−→x

0−→x
0−→x

0−→x
0−→ . . . .

Call a path t pure if there is x ∈ W such that t = x. For a path t, write
t0 for the starting state of t(0) (i.e., if t(0) = y

x−→z, then t0 = y).
Now, the idea to build system S is that the states of S are the paths

in M and the dynamics is the shift operator (moving all transitions once
to the right). Formally:

Definition 6. Let M = (W, 0, R, C, i) be a relevant model. Define a
system:

• X is the set of all two-sided infinite paths in M . The topology on
X is the subspace topology of the product topology on RZ where R
carries the discrete topology.

• x0 := 0.
• σ : X → X is the shift operator. It maps a path t to the the path
σ(t) defined by σ(t)(n) = t(n+ 1).

• A := X
• v ∈ P (t, u) iff there are x, y, z ∈ W such that t0 = x, u = y, Rxyz

(i.e., y x−→z) and v is the path

. . .
0−→y

0−→y
x−→z

0−→z
0−→ . . . .

• Compatibility: tC0u iff t0Cu0.
• Interpretation: i0(t, p) := i(t0, p).
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Call S(M) = (X, x0, σ, A, P, C0, i0) the interactive topological system
induced by the relevant model M . (Lemma 7 below shows that this is
well-defined.)

If M was an ordered relevant model with order ≤, define the order ⊑
(well-defined by lemma 10 below) on S(M) by

• t ⊑ u iff (a) t = u, or (b) t0 < u0, or (c) t0 = u0 and u = u0.

So compatibility and interpretation in the system are compatibility
and interpretation, respectively, at time 0 in the model. And perturbing
a path t by a (pure) path u yields the ‘merged’ path v above.

In the remainder, we check that S = S(M), when regarded as a
relevant model, is indeed equivalent to M . Let’s start by checking that S
is an interactive topological system.

Lemma 7. In the setting of definition 3, S(M) is a simplified interactive
topological system. It is standard if M is finite.

Proof. Write M = (W, 0, R, C, i) and S(M) = (X, x0, σ, A, P, C0, i0). The
opens of X are given by arbitrary unions of finite intersections of sets of
the form Un

r , which contain all paths whose n-th component is r ∈ R. So
X is Hausdorff (if t ̸= u differ at position n, they are separated by the
disjoint opens Un

t(n) and Un
u(n)) and σ is continuous (the σ-preimage of Un

r

is Un+1
r ). By construction, S(M) is simplified. Next, σ clearly is bijective;

and if M is finite, also R is finite, hence compact, so, by Tychonoff’s
theorem, the product space RZ is compact, so, since X is closed, it also
is compact.

It remains to show that P : X ×X ⇒ X is appropriately continuous.
For x, y ∈ W , write

Rx := {r ∈ R : the label of r is x}
Ry := {r ∈ R : the starting state of r is y}.

Closed-valued: Given t, u ∈ X, if u is not pure, P (t, u) = ∅ is closed.
If u = y is pure, write x := t0, then

P (t, u) =
{
v ∈ X : ∃z ∈ W : Rxyz and v = . . . y

0−→ y
x−→z

0−→ z . . .
}

=
{
v ∈ X : ∀0 ̸= n ∈ Z : v(n) ∈ R0, v(0) ∈ Rx, v(0) ∈ Ry

}
which is closed qua intersection of closed sets.

Upper hemicontinuous: For t, u ∈ X, let V ⊆ X be open with
P (t, u) ⊆ V . If u is not pure, consider

U0 := {(t′, u′) ∈ X ×X : ∃n ∈ Z : u′(n) ∈ R \R0}.
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This is open with (t, u) ∈ U0 and, for all (t′, u′) ∈ U0, we have P (t′, u′) =
∅ ⊆ V , as needed. So let u = y be pure. Write x := t0. Define

Ux
y :=

{
(t′, u′) ∈ X ×X : t′(0) ∈ Rx and u′(0) ∈ Ry

}
.

Then Ux
y is open with (t, u) ∈ Ux

y and, for (t′, u′) ∈ Ux
y , it’s easily shown

that P (t′, u′) ⊆ P (t, u), and hence P (t′, u′) ⊆ V , as needed.
Closed-domain: To show that {(t, u) : P (t, u) ̸= ∅} is closed, let

t, u ∈ X with P (t, u) = ∅ and find an open U ⊆ X × X such that
(t, u) ∈ U and for all (t′, u′) ∈ U , we have P (t′, u′) = ∅. If u is not pure,
we can choose U0 as above. If u = y, write x := t0, and we can choose Ux

y

as above (if (t′, u′) ∈ Ux
y , then P (t′, u′) ⊆ P (t, u) = ∅).

The next lemma characterizes convergence of the dynamics in S(M).

Lemma 8. In the setting of definition 3, the following are equivalent for
t, u ∈ X:

1. limn σ
n(t) = u

2. u is a constant path which also is the tail of t: i.e., for all n ∈ Z,
u(n) = u(0) and there is N such that, for all n ≥ N , t(n) = u(0).

Proof sketch. (1)⇒(2). Assume limn σ
n(t) = u. To show that u is con-

stant, let k ∈ Z and show u(k) = u(k + 1). Consider the open set
U = Uk

u(k) ∩ Uk+1
u(k+1). Since u ∈ U and σn(t) converges to u, there is N

such that, for all n ≥ N , σn(t) ∈ U . Since σN(t) ∈ U and σN+1(t) ∈ U ,

σN(t)(k + 1) = u(k + 1) σN+1(t)(k) = u(k).

Now, since σN+1(t)(k) = σN(t)(k + 1), we get u(k) = u(k + 1). To show
that t has tail u(0), consider U0

u(0).
(2)⇒(1). Assume u is a constant path which is also the tail of t. If

Uk
r is an open neighborhood of u (generalizing to any open neighborhood

is not too difficult), let N be the start of the u-tail of t, then, for n ≥ N ,
we have σn(t)(k) = t(n+ k) = u(k) = r, so σn(t) ∈ Uk

r .

Now the key lemma is to relate truth in the original relevant model
M to truth in the relevant model induced by the system S(M).

Lemma 9. Let M be a relevant model. Then, for all states t of M(S(M))
and for all formulas φ,

M(S(M)), t ⊩ φ ⇔ M, t̂0 ⊩ φ.
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Proof. Write M = (W, 0, R, C, i) and S := S(M) = (X, x0, σ, A, P, C0, i0).
The proof is by induction on φ.

For atomic φ, by definition, t ⊩ φ iff i0(t̂, φ) = 1 iff i(t̂0, φ) = 1 iff
t̂0 ⊩ φ.

For ¬φ, we have to show(
∀u ∈ WS : t(C0)Su ⇒ u ̸⊩ φ

)
iff

(
∀y ∈ W : t̂0Cy ⇒ y ̸⊩ φ

)
.

(⇒) Let y ∈ W with t̂0Cy. Consider y ∈ X. Then t̂C0y, so t(C0)Sy,
and hence, by assumption, y ̸⊩ φ. By induction hypothesis, y = y0 ̸⊩ φ,
as needed.

(⇐) Let u ∈ WS with t(C0)Su. So t̂C0û, so t̂0Cû0. By assumption,
û0 ̸⊩ φ. By induction hypothesis, u ̸⊩ φ, as needed.

For φ ∧ ψ and φ ∨ ψ, this is immediate by induction hypothesis.
For φ⇝ ψ, we have to show(
∀u, v ∈ WS : RStuv and u ⊩ φ ⇒ v ⊩ ψ

)
iff

(
∀y, z ∈ W : Rt̂0yz and y ⊩ φ ⇒ z ⊩ ψ

)
.

(⇒) Let y, z ∈ W with Rt̂0yz and y ⊩ φ. We need to show z ⊩ ψ.
If t = 0S, then t̂0 = 0, so Rt̂0yz implies y = z, so y = z and RStyz.

By induction hypothesis, y ⊩ φ, so the assumption implies z ⊩ ψ, hence,
again by induction hypothesis, z ⊩ ψ.

So let t ̸= 0S, so t̂ = t ∈ X. Define x := t0 and v as the path
starting with y moving via x to z at time 0 and then staying there. Then,
by definition, v ∈ P (t, y), and, by lemma 8, limn σ

n(v) = z. Hence,
by definition of RS, we have RStvz. Since v̂0 = y ⊩ φ, the induction
hypothesis implies v ⊩ φ. So the assumption implies z ⊩ ψ. Hence, by
induction hypothesis, z = ẑ0 ⊩ ψ, as needed.

(⇐) Let u, v ∈ WS with RStuv and u ⊩ φ. Show v ⊩ ψ.
If t = 0S, then RStuv implies u = v. Hence t̂0 = 0 and û = v̂ and

hence also û0 = v̂0. So Rt̂0û0v̂0. By induction hypothesis, û0 ⊩ φ, so the
assumption implies v̂0 ⊩ ψ, so, again by induction hypothesis, v ⊩ ψ, as
needed.

So assume t ̸= 0S. Then RStuv implies t, u, v ∈ X and there is
a ∈ A = X with u ∈ P (t, a) and limn σ

nu = v. Since u ∈ P (t, a),
there are x, y, z ∈ W such that t0 = x, a = y, Rxyz, and u is the path
starting with y moving via x to z at time 0 and then staying there.
Since limn σ

nu = v, lemma 8 implies v = z. Moreover, since u ⊩ φ, the
induction hypothesis yields y = û0 ⊩ φ. Since Rt̂0yz (since t0 = x), the
assumption implies z ⊩ ψ, so, again by induction hypothesis, we have,
since v̂0 = z0 = z, that v ⊩ ψ, as needed.
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Finally, we need that the construction of the system S from a relevant
model M preserves (star-) orderedness.

Lemma 10. If M is a (star-) ordered relevant model, then S(M) is a
(star-) ordered interactive topological system.

Proof. Write M = (W, 0, R, C,≤, i) and S := S(M) = (X, x0, σ, A, P, C0,
⊑, i0). It is straightforward to verify that ⊑ is a partial order on X. For
heredity, assume t and u are in M(S) with t ⊩ φ and t ⊑S u. By definition
of ⊑, if t ⊑S u, then t̂ ⊑ û, which in turn implies t̂0 ≤ û0. By lemma 9,
t̂0 ⊩ φ. So, since M is ordered, û0 ⊩ φ. So by lemma 9, u ⊩ φ, as needed.

Finally, assuming M to be star-ordered, we show that also S is star-
ordered, i.e., (C0)S is symmetric, serial, and convergent. Symmetric: If
t(C0)Su, then t̂C0û, so t̂0Cû0, so û0Ct̂0, so ûC0t̂, so u(C0)St. Serial: Given
t, let y be such that t̂0Cy. Then t̂C0y, so t(C0)Sy. Convergent: Given t,
assume t(C0)Su for some u. So x := t̂0 is C-compatible with something
(namely û0), so let x∗ be the ≤-greatest element C-compatible with x.
We claim that u := x∗ is the ⊑S-greatest element (C0)S-compatible with
t. Indeed, we have t(C0)Su since t̂0 = xCx∗ = û0. And if v is such
that t(C0)Sv, we show that v ⊑S u. Indeed, since t(C0)Sv, we have
x = t̂0Cv̂0 =: w, so w ≤ x∗. If w < x∗, we have v̂ ⊑ u, so, since u ∈ X,
also v ⊑S u. And if w = x∗, we have, since v̂0 = w = x∗ = u0 and u = u0,
that v̂ ⊑ u, so again v ⊑S u.

Now our desired theorem 4 follows:

Proof of theorem 4. Let M be a relevant model. Choose S to be the
simplified interactive topological system S(M) from definition 6. If M is
finite, S is standard. Writing 0 for the base world of M , the base world
of the relevant model induced by S (i.e., MS(M)) is 0S. Then lemma 9
implies, for all φ, that 0S ⊩ φ iff 0 = 0̂S0 ⊩ φ.

If M was a positive relevant model, we could do the same construction
of S(M) and proof of lemma 9 but ignore compatibility and negation.
Then S would be a positive simplified interactive topological system whose
induced relevant model is equivalent to M . If M is ordered, lemma 10
implies that S is ordered, and they still are equivalent by lemma 9. The
same holds when replacing ‘ordered’ by ‘star-ordered’.
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