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Iterating Both and Neither
With Applications to the Paradoxes

Levin Hornischer

Abstract A common response to the paradoxes of vagueness and truth is to
introduce the truth-values ‘neither true nor false’ or ‘both true and false’ (or
both). However, this infamously runs into trouble with higher-order vagueness
or the revenge paradox. This, and other considerations, suggest iterating ‘both’
and ‘neither’: as in ‘neither true nor neither true nor false’. We present a novel
explication of iterating ‘both’ and ‘neither’. Unlike previous approaches, each
iteration will change the logic, and the logic in the limit of iteration is an ex-
tension of paraconsistent quantum logic. Surprisingly, we obtain the same limit
logic if we use (a) both and neither, (b) only neither, or (c) only neither applied
to comparable truth-values. These results promise new and fruitful replies to the
paradoxes of vagueness and truth. (The paper allows for modular reading: for
example, half of it is an appendix studying involutive lattices to prove the re-
sults.)

1 Introduction

In addition to the classical truth-values true (1) and false (0), logicians also explored
adding a third truth-value for neither true nor false (here written as {0,1}n), and a
fourth truth-value for both true and false (here written as {0,1}b). The former was
prompted by situations where sentences are neither true nor false: for example, in
borderline cases of vague predicates (‘A hundred grains of sand make a heap’); or
in the case of the liar sentence (‘This sentence is false’) where having either classi-
cal truth-value leads to inconsistency. The latter was prompted by situations where
sentences are both true and false: for example, when understood with respect to a
database which happens to be inconsistent. (And some also argued that the former
cases should actually be both true and false.)

But why stop here? If this motivation is conceded, it doesn’t seem to be exhausted
after just one iteration of ‘both’ and ‘neither’. Consider the following examples.

2010 Mathematics Subject Classification: Primary 03G10, 06B20, 03B50; Secondary 18A35
Keywords: involutive lattice, first-degree entailment, paraconsistent quantum logic, Belnap
computer, higher-order vagueness, liar paradox, revenge paradox

1

This is the author's manuscript of a paper accepted at the Notre Dame Journal of Formal Logic.

Copyright: Notre Dame Journal of Formal Logic

https://ndjfl.nd.edu///



2 L. Hornischer

(1) Higher-order vagueness: The claim that a thousand grains of sand make a heap
seems to be neither true nor neither true nor false, since it is ‘in between’ these
two truth-values (here written as

�
{1},{0,1}n

	
n). (2) The revenge sentence ‘This

sentence is neither false nor neither true nor false’: If it had one of the three truth-
values suggested by the ‘solution’ to the liar sentence (true, false, or neither), we
get inconsistency, so we could iterate the ‘solution’ and take it to be neither true
nor neither true nor false. (3) Maybe a sentence can be both neither true nor false
and both true and false according to the fusion of two databases, one claiming the
former and one the latter (here written as

�
{0,1}n,{0,1}b

	
b). (4) In Buddhist logic,

Nagarjuna discusses cases where “Neither both nor neither should be asserted” [cited
and discussed in 34, 35]. (5) Or, tongue-in-cheek, consider the last lines of the movie
Mowgli: Legend of the Jungle: “Mowgli, man and wolf, both and neither”.

Thus, even though this question of iterating ‘both’ and ‘neither’ may first sound
like a mere curiosity, it is philosophically useful: especially for the (higher-order)
paradoxes of vagueness and truth. In fact, the question is at least almost half a
century old: it was already asked by Meyer [27, 19] and others.1

[I]f we take seriously both true and false and neither true nor false separately,
what is to prevent our taking them seriously conjunctively? As in “It is both true
and false and neither true nor false that snow is white”. That way, in the end, lies
madness.

On one natural way of ‘taking them conjunctively’, this madness was subse-
quently investigated by Priest [31] and later, in greater generality, by Shramko and
Wansing [37]. Both conclude that, actually, the result is quite coherent.

In this paper, we revisit that question. We consider another, to the best of our
knowledge novel way of ‘taking them conjunctively’. We generate in a different
way new truth-values from old ones, using ‘both’ and ‘neither’. This also seems
natural, but has more intricate—albeit intriguing—structure. And it promises fruitful
applications to the paradoxes.

In more detail, the structure and results of this paper are as follows. In section 2,
we motivate why to iterate ‘both’ and ‘neither’ by discussing the mentioned appli-
cations to databases (Belnap computers), truth, and vagueness. In section 3, we
describe the construction process in detail. And in section 4, we describe what lies
at the end of iterating this process forever. In section 5, we investigate the result-
ing logic of these truth-values. Unlike the existing approaches, the logic fails to be
distributive already after the second iteration. In fact, we prove that, after every it-
eration, there will be some logical law that fails which held previously. The tightest
known upper bound is paraconsistent quantum logic (PQL): all its laws are valid
for iterated both-and-neither, but whether it is exactly the logic of iterated both-and-
neither is a curious open question. In section 6, we investigate the relationship be-
tween using (a) both and neither (suggestive for Belnap computers), (b) only neither
(suggestive for truth), or (c) only neither applied to comparable truth-values (sug-
gestive for vagueness). After one iteration, these yield different logics (e.g., strong
Kleene vs. FDE). However, remarkably, in the limit of the iteration, their logics
coincide. In section 7, we explore the philosophical consequences of these results.
They promise new and fruitful replies to the paradoxes of vagueness and truth. We
conclude in section 8 with some open questions.

The proof of the results are in appendices A–D. They constitute roughly half of
the paper and are a mathematical study of involutive lattices developing the above
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philosophical ideas. Appendix A provides a more general but unified definition of
both-and-neither like operations and the algebras that they form (this greater gen-
erality is needed afterward in the proofs). Appendix B describes the fixed point
of iterating these operations forever. Appendix C investigates the congruences of
the both-and-neither algebras to understand their logics (for section 5). Appen-
dix D develops embeddability results between both-and-neither, neither-only, and
comparable-neither-only algebras to show that they yield the same logic in the limit
(for section 6).

2 Motivation

We discuss three applications motivating the usage and iteration of ‘both’ and ‘nei-
ther’. First, Belnap computers provide an interpretation of a single use of ‘both’
and ‘neither’, and considering networks of Belnap computers motivates iterations of
‘both’ and ‘neither’. Second, the liar paradox provides an interpretation of a single
use of ‘neither’, and the revenge paradox motivates iterations of ‘neither’. Third,
vagueness provides an interpretation of a single use of ‘neither’, and higher-order
vagueness motivates iterations of ‘neither’.

These surely are not the only applications. As already mentioned, rather than
taking vague or liar sentences to be neither true nor false (e.g., supervaluationism in
vagueness [14] or paracomplete theories of truth [24]), some approaches take them
to be both true and false (subvaluationism [6] and paraconsistent truth [30]). So
we could develop the motivating applications equally well on those approaches; the
choice for the former here is just for illustration. Concerning yet further applications,
we already mentioned Buddhist logics, and others might possibly come, e.g., from
the rich philosophical ideas behind Belnap–Dunn logic [28] or from the related logic
of epistemic modals [18, 17].

2.1 Belnap computers & networks thereof A well-known connection between
computers—specifically, partial recursive functions—and ‘neither true nor false’ is
the (strong or weak) Kleene logic [23, ch. XII]. Since computer algorithms may fail
to terminate, the ‘neither’ truth-value is interpreted along the lines of ‘the computer
neither establishes that the sentence is true nor that it is false’. Here, however, we
consider another connection between computers and ‘both’ and ‘neither’.

Belnap [3, 4] forcefully argued that the logic with which a computer should
think is first-degree entailment FDE: A computer might receive various inputs about
whether a given statement p is true. It might get no input, it might get some and only
inputs saying that p is true, it might get some and only inputs saying that p is false,
and it might get both some inputs saying that p is true and some inputs saying that
p is false. This yields, respectively, the four truth-values /0,{1},{0},{0,1}, i.e., the
possible unions of the inputted classical truth-values.2 So the computer has to reckon
with the powerset 4 := P

�
{0,1}

�
of the possible input truth-values 2 := {0,1}.

The next question is how should the computer reason with these truth-values: i.e.,
how should it compute truth-values of complex sentences given the truth-values for
the atomic statements? It turns out, the answer is this: While the subset order on the
set of truth-values P

�
{0,1}

�
orders them by how much information they provide,

we can also order them by how close they are to being true (and only true) as shown
in figure 1. Then, if v : P→ 4 is an assignment of truth-values to the set of atomic
sentence P= {p,q, . . .}, we can extend it to complex sentences as follows:



4 L. Hornischer

{0}

{} {0,1}

{1}

Figure 1 The truth-order on 4 = P
�
{0,1}

�
.

• v(ϕ ∨ψ) = the least upper bound of v(ϕ) and v(ψ) in the truth-order on 4.
• v(ϕ ∧ψ) = the greatest lower bound of v(ϕ) and v(ψ) in the truth-order on

4.
• v(¬ϕ) = the set of classical negations of the classical truth-values in v(ϕ).

The logic FDE then emerges as preservation of truth [32, ch. 8]: Writing
D :=

�
{1},{0,1}

	
for the truth-values that contain truth, we say that a set Γ of sen-

tences FDE-entails a sentence ϕ (written Γ ⊨FDE ϕ) iff, for any valuation v : P→ 4,
if v(ψ) ∈ D for every ψ ∈ Γ, then v(ϕ) ∈ D.

Those computers are then also called Belnap computers. And, in the spirit of
iterating this process, Shramko and Wansing [36] ask: what if we have a network of
Belnap computers—how should it think? Specifically, if we have a server receiving
input about the truth-value of an atomic sentence p from several Belnap computers,
what truth-value should the server assign to p? Taking the same idea as above, if
the server receives the truth-values a1, . . . ,an (with n ≥ 0, i.e., it might not receive
anything), then it takes p to have the new truth-value {a1, . . . ,an}. Thus the set of
new truth-values that the server should use is 16 := P

�
4
�
. In determining the logic,

there is a complication that, in addition to the truth-order, there also is a falsity-order.
But when focusing on just the truth-order (or, equivalently, on just the falsity-order),
then Shramko and Wansing [36] show that the resulting logic again is FDE. Hence,
although the expressive power of the truth-valued increased, the logic remained the
same.

But other approaches are possible, too. So far, the computer acted as an accu-
mulator: it deterministically collected all the truth-values provided by the sources
(modulo order and multiplicity). But, as we now explore, the computer could also
be a selector: non-deterministically merging inputted truth-values.

Let’s first consider only two input sources A and B saying that the sentence in
question has a classical truth-value a and b, respectively. Now the computer (or rea-
soner) has to assess this information—maybe by taking into account the credibility
and certainty of the source—and merge it into a truth-value. Its policy could be this.
If the sources agree (i.e., a = b), it goes with their judgment and takes {a} (= {b}).
If the sources don’t agree (i.e., a ̸= b), then

• if the computer accepts A but not B, it takes {a},
• if the computer accepts B but not A, it takes {b},
• if the computer accepts neither A nor B, it takes {a,b}n representing neither

a nor b,
• if the computer accepts both A and B, it takes {a,b}b representing both a and

b.
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Source A Source B Source C

0 1 1

Merge Merge

{0,1}n {1}

Merge

�
{0,1}n,{1}

	
b

Figure 2 Example of merging the information of three sources.

Thus, for the possible choices of classical truth-values a and b, we again obtain the
four truth-values {0},{0,1}n,{0,1}b,{1} and hence the logic FDE.

But what if a third source C becomes available and the computer now has to merge
its decision with this new information? This could, for example, look like in figure 2:
The original two sources A and B inputted 0 and 1, respectively. The computer took
none of them to be convincing, hence merging their input into the new truth-value
{0,1}n. Now the computer first processes the new source C alone. Since it is a
single source, there is no conflict (just like with two agreeing sources), and it takes
over its truth-value {1}. Next, the computer has to merge the former result {0,1}n
with the new {1}. Say it takes both of these (preprocessed) sources convincing, thus
producing

�
{0,1}n,{1}

	
b.

Of course, many other versions of this example are possible. The sources could
have different values. The computer could make different decisions in merging.
There could be more sources, merged in different order (resulting in deeper and
different nestings of {·}n and {·}b). But, as before, the question is: If we consider all
these possibilities—i.e., if we generate all these new truth-values—which laws are
still valid that the computer can reason with? In short, what is the logic of these new
truth-values? We answer this below (and it will be different from FDE).

2.2 The liar paradox & revenge Infamously, the liar sentence (‘This sentence is
false’) poses a paradox in the context of the two classical truth-values: it is true
iff it is false (i.e., not true). A popular response—in line with Kripke’s theory of
truth [24]—is to take the liar sentence to be neither true nor false. But this move
faces the well-known revenge paradox: The revenge sentence

This sentence is either false or neither true nor false. (1)

again poses a contradiction in the context of the three values true, false, and neither
true nor false: (1) is true iff it is not true.3
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Now, it is suggestive to iterate the previous solution: We add the new truth-values
neither a nor b where a and b are truth-values that we had so far. Then we regard the
revenge sentence (1) as neither true nor neither true nor false. Then no contradiction
arises, because (1) is not ‘true’ and also not ‘false or neither true nor false’.

Of course, we can now build a new revenge sentence for those iterated truth-
values. And we can respond again by further iterating ‘neither’. Thus, a solution to
the revenge paradox occurs in the limit of this process. We will explore this below.

Priest [31] arrived at the question of iterating ‘both’ in a related way. The start-
ing point is that the liar sentence is both true and false, in line with a paraconsistent
theory of truth [30]. The analogous revenge sentence then also leads to further truth-
values like both true only and both true and false. Priest [31] formalizes this process
and shows that, although the expressive power of the truth-values increases, the logic
remains the same as after applying the process only once. Here we instead consider
a broadly Kripkean theory of truth (that rather opts for paracompleteness than para-
consistency) and, on our explication of the iteration also the logic changes.

Moreover, one should also mention Field’s theory of truth [12, 13]. To address
the worry that the language of this theory is not expressive enough to state the ‘de-
fectiveness’ of the liar sentence, the language contains a ‘determinacy operator’ D.
So one can say that the liar sentence λ is neither determinately true (Dλ ) nor deter-
minately false (D¬λ ). To deal with the revenge sentence λ2 which, in this context,
says of itself that it is not determinately true, the language has another determinacy
operator D2. So one can say that λ2 is neither D2-determinately true (D2λ2) nor
D2-determinately false (D2¬λ2). For the next revenge sentence λ3 which says of
itself that it is not D2-determinately true, the language has yet another determinacy
operator D3, and so on. So the language has a whole hierarchy of determinacy op-
erators D = D1,D2, . . . ,Dα , . . . (in fact, transfinitely many). And one might view the
‘neither Dα -determinately true nor Dα -determinately false’ as yet another way of
iterating ‘neither’.

2.3 Vagueness & higher-order vagueness Vagueness is another common reason for
introducing neither true nor false. Consider a sentence p involving a vague predicate,
like ‘This is a heap of sand’. As a default, we could think that p can have the classical
truth-values 0 and 1. But then there is an implausibly sharp cut-off between heaps
and non-heaps. When p is about a borderline case of a heap, say 100 grains of sand,
we neither want to call p true nor call p false.

It is more natural to speak of three kinds of cases: where p is definitely true (write
{1}), where p is definitely false (write {0}), and where p is neither true nor false
(write {0,1}n).

However, this move faces the issue of higher-order vagueness (see, e.g., [14, 42]).
Just as it was a blurry line where 1 ended and 0 started, it seems to be an equally
blurry line where {1} ends and {0,1}n starts (and similarly between {0,1}n and
{0}).

Again, it now is suggestive to iterate the previous reply. So if p is said about the
just mentioned border-borderline case of a heap, we take p to be neither definitely
true nor neither true nor false ({{1},{0,1}n}n). And so on, for further iterations. We
need a precise understanding of the neither operation to understand what ‘logic of
vagueness’ this gives rise to.
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0

1

Figure 3 The classical truth-value algebra 2.

{0}

{0,1}n {0,1}b

{1}

Figure 4 The truth-value algebra 4 = BN(2).

3 The both and neither operations

We describe how to build from two ‘old’ truth-values a and b the ‘new’ truth-values
{a,b}b (both a and b) and {a,b}n (neither a nor b). We do so by generalizing the
intuitions that lead from classical logic with its two truth-values to FDE with its four
truth-values. We find that the algebraic structure of the truth-values thus generated
always is what is known as an involutive lattice. So our generalized both-and-neither
operation takes an involutive lattice A and produces another involutive lattice BN(A)
consisting of all the new values {a,b}b and {a,b}n with a,b ∈ A. Special cases are
the neither-only involutive lattice N(A) and the comparable-neither-only involutive
lattice N(A).

3.1 The starting point: classical logic The starting point is classical logic with its
two truth-values 2 := {0,1}. They are naturally ordered by ‘being more true than’:
i.e., 0 < 1 as shown in figure 3. Conjunction and disjunction are simply interpreted
as min and max in that ordering, and negation is interpreted by ¬0 = 1 and ¬1 = 0.

3.2 The first iteration: FDE The next, well-established step is to take copies of the
truth-values in 2 (often written as {0} and {1}) and add the truth-values neither true
nor false and both true and false (often written as /0 and {0,1}, respectively; here we
write {0,1}n and {0,1}b). This collection, which we denote 4, is ordered by ‘more
true than’ as shown in figure 4. (We have already seen this as figure 1.) We will now
closely consider the three pieces of intuitions that yield this structure of truth-values
to guide our general definition of ‘both’ and ‘neither’.

Intuition 1: truth-values. So we obtain the four truth-values by taking a copy of
the original truth-values 0 and 1 and by also applying ‘both’ and ‘neither’ to them
yielding neither 0 nor 1 and both 0 and 1. These are all new ones because, whatever
neither a nor b and both a and b are (for old truth-values a and b), we expect two
constraints: First, neither a nor b arguably means the same as neither b nor a, and
similarly for ‘both’. So we don’t need to additionally add neither 1 nor 0 or both 1
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and 0. Second, saying neither a nor b is only felicitous when a ̸= b, and similarly
for ‘both’. It sounds odd to say ‘It neither rains nor rains’.4

Here is a way to define (or rationally reconstruct) neither 0 nor 1 and both 0 and 1
so as to meet these constraints: First, for two old truth-values a and b and k ∈ {n,b},
define

{a,b}k :=

(
{a} if a = b
({a,b},k) if a ̸= b.

(2)

Then define neither a nor b as {a,b}n and both a and b as {a,b}b. This definition
satisfies the first constraint (since {a,b}k = {b,a}k). It satisfies the second constraint
since b (both) or n (neither) only occur if a ̸= b. And the definition has the convenient
side-effect that, if we have an old truth-value a, we can take the copy {a} of it, and
stipulate it to be {a,a}n = {a,a}b purely for more efficient notation.

Intuition 2: order. The intuition behind the ‘more true than’ order is this: anything
is more true than pure falsity {0}, and pure truth {1} is more true than anything, so
they are the least and greatest elements, respectively. Now, neither 0 nor 1 is in
between: it is more true than pure falsity since it does not contain falsity, but it is
less true than pure truth since it does not contain truth. Similarly, both 0 and 1 is
in between: it is more true than pure falsity since it contains truth, but it is less true
than pure truth since it contains falsity. Finally, since it is not clear which is a bigger
defect—not containing truth or containing falsity—neither 0 nor 1 and both 0 and 1
are not comparable.

With this order, 4 is a lattice: i.e., for any two elements x and y, the greatest lower
bound x∧ y and the least upper bound x∨ y exist. These lattice operations—called
meet and join, respectively—then can interpret the conjunction and disjunction (of
the language interpreted over these truth-values). Also, the lattice is bounded: it has
a least and a greatest element, which interpret the logical symbols ⊥ (falsum) and ⊤
(verum), respectively.

Intuition 3: negation. The idea of classical negation is that the sentence ¬ϕ has
truth-value 1 iff ϕ has truth-value 0. Hence ¬1 = 0 and ¬0 = 1. This extends to the
new truth-values via the following (intuitive) equivalences:

¬ϕ has truth-value neither 0 nor 1
⇔ ¬ϕ neither has truth-value 0 nor truth-value 1
⇔ ϕ neither has truth-value ¬0 = 1 nor truth-value ¬1 = 0
⇔ ϕ has truth-value neither 0 nor 1.

So ¬{0,1}n = {¬0,¬1}n = {0,1}n. Similarly, ¬{0,1}b = {¬0,¬1}b = {0,1}b.
Summary: algebra. So, the set of four truth-values 4 still forms a bounded lattice

(hence interprets conjunction, disjunction, falsum, verum) and it has a unary operator
¬ (hence interprets negation). Thus, we have a (universal) algebra with the signature
(2,2,1,0,0), i.e., a set with two binary operations (∧,∨), a unary operation (¬), and
two constants (0,1). Hence, in the spirit of universal algebra, we should be more
precise about which kind of algebra we are dealing with. Arguably the most famous
algebras of this signature are Boolean algebras; which 2 still is, but 4 is not anymore
(e.g., x∨¬x = 1 fails). But 4 still is what is known as a bounded involutive lattice.5

Definition 3.1 A bounded involutive lattice is a structure (A,∨,∧,¬,0,1) such
that (A,∨,∧,0,1) is a bounded lattice (see, e.g., [5, 25] for the definition) and the
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unary operation ¬ satisfies the identities:

¬¬x = x ¬(x∧ y) = ¬x∨¬y ¬1 = 0.6

For brevity, we drop the word ‘bounded’, so involutive lattice always means bounded
involutive lattice (and not just a lattice with an involution). As usual, we write A both
for the structure (A,∨,∧,¬,0,1) and its underlying set.

In fact, 4 still is distributive, i.e., satisfies x∧ (y∨ z) = (x∧ y)∨ (x∧ z). However,
we will see that, at the next iteration of ‘both’ and ‘neither’, distributivity will fail,
but we will always get involutive lattices.

3.3 The general case In the general case, assume we have a set A of truth-values
with the structure of an involutive lattice—like 4. How do we apply the ‘both’ and
‘neither’ operations to get an involutive lattice A′ = BN(A)? We describe it now
by generalizing the preceding intuitions. Figure 5 below shows what the resulting
BN(4) will look like.

Following the first intuition, we build, from the ‘old’ truth-values of A, the fol-
lowing set of ‘new’ truth-values

A′ :=
�
{a,b}k : a,b ∈ A,k ∈ {n,b}

	
. (3)

In particular, A′ contains the copy {a} of each a ∈ A.
The second intuition concerns the order of A′. It demanded that the new elements

{a,b}n and {a,b}b are incomparable and in between the old elements a ∧ b and
a∨b. Thus, we formally define the new order ≤′ on A′ using the old order ≤ on A as
follows: For {a,b}k and {c,d}l in A′, set

{a,b}k ≤′ {c,d}l iff {a,b}k = {c,d}l or a∨b ≤ c∧d. (4)

The third intuition concerns negation. It immediately generalizes to define the
new negation ¬′ on A′ from the old negation ¬ on A: If {a,b}k is in A′, then

¬′{a,b}k := {¬a,¬b}k. (5)

Now, the following theorem—which we prove in appendix A—shows that this
way we indeed get again an involutive lattice.

Theorem 3.2 Let A = (A,∨,∧,¬,0,1) be an involutive lattice. Define A′ is as
in (3) with order ≤′ as in (4) and ¬′ as in (5). Set 0′ := {0} and 1′ := {1}. Then
BN(A) := (A′,∨′,∧′,¬′,0′,1′) is an involutive lattice where for any x = {a,b}k and
y = {c,d}l in A′,

x∨′ y =





y if x ≤′ y
x if y ≤′ x
{a∨b∨ c∨d} if x and y are ≤′-incomparable

and similarly for ∧.

As mentioned, BN(4), the next step in iterating ‘both’ and ‘neither’, is depicted
in figure 5. It is the first one to contain the truth-value of the Mowgli sentence:�
{0,1}b,{0,1}n

	
b. Further iterations become too big to draw.
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�
{0}

	

�
{1}

	

�
{0,1}n

	 �
{0,1}b

	�
{0,1}n ,{0,1}b

	
n

�
{0,1}n ,{0,1}b

	
b

�
{0},{1}}n

�
{0},{1}}b

�
{0,1}n ,{0}

	
n

�
{0,1}n ,{0}

	
b

�
{0,1}b ,{0}

	
b

�
{0,1}b ,{0}

	
n

�
{0,1}n ,{1}

	
n

�
{0,1}n ,{1}

	
b

�
{0,1}b ,{1}

	
n

�
{0,1}b ,{1}

	
b

Figure 5 The truth-value algebra BN(4).

3.4 Neither-only, both-only, comparable-neither-only When constructing BN(A)
from A, we used ‘both’ and ‘neither’, but in applications we may want to restrict
their usage. For example, in the case of truth, we might only allow ‘neither’ (on a
broadly Kripkean theory of truth) or allow only ‘both’ (on a broadly Priestian theory
of truth). Or in the case of vagueness, where the intuition was that N(a,b) is the
truth-value in between a and b, it is natural to only allow ‘neither’ and to require that
a and b are comparable in A, i.e., either a ≤ b or b ≤ a (so it makes sense to speak of
a truth-value lying in between the two).

We can recover these special cases as subalgebras of BN(A), i.e., subsets of the
underlying set of BN(A) that are closed under the operations ∨,∧,¬,0,1 of BN(A)
(proven in appendix A).

• BN(A) the both-and-neither algebra of A
• N(A) :=

�
{a,b}n : a,b ∈ A

	
the neither-only algebra of A

• B(A) :=
�
{a,b}b : a,b ∈ A

	
the both-only algebra of A

• N(A) :=
�
{a,b}n : a,b ∈ A comparable

	
the comparable-neither-only alge-

bra of A.
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The neither-only and the both-only algebra are isomorphic (just replace n by b).
And we have the inclusions N(A) ⊆ N(A) ⊆ BN(A). In section 6, we discuss sur-
prising embeddability results in the other direction (embedding BN(A) in iterated
applications of N to A). But let’s first further investigate the iteration of ‘both’ and
‘neither’.

4 Iterating forever

If we start with the classical truth-values 2 and keep on iterating ‘both’ and ‘neither’,
what—as Meyer asked—lies in the end? Another way of asking this is: what is the
smallest involutive lattice A that contains 2 and applying ‘both’ and ‘neither’ to it
does not yield anything new, i.e., A is isomorphic to BN(A)?

Computer scientists know the answer to such questions: A is the initial algebra
for the construction BN. Or A is the least fixed point of the construction BN above 2.

Concretely, we construct A as follows (the details are in appendix B). First, we can
naturally embed any involutive lattice A into BN(A) by mapping an old element a to
its copy {a}: i.e., we have a function e : A → BN(A) mapping a to {a}. And this is
an involutive lattice embedding, i.e., an injective function that preserves ∨,∧,¬,0,1.
We call e the natural embedding. Next, whenever we have an embedding f : A → B,
we also have the embedding BN( f ) mapping {a,b}k in BN(A) to { f (a), f (b)}k in
BN(B). So we get the following chain of embeddings (with BN2(·) := BN(BN(·)),
etc.)

2 BN(2) BN2(2) BN3(2) . . .
e BN(e) BN2(e)

(6)

For n ≤ m, write An := BNn(A) and enm : An → Am for the result of chaining the
above embeddings from An to Am. Now, we take the ‘limit’ of this chain, i.e., collect
all the truth-values built along the way. Formally, this is known as a direct limit (in
model theory) or co-limit (in category theory).7 The direct limit (A,en) is given as
follows:

• A is the union
S

n≥0 An modulo the equivalence relation a ∼ b iff there is
n ≤ m with enm(a) = b or enm(b) = a (i.e., one is just the embedded version
of the other). Let’s write [a] for the equivalence class of a.

• The operations between equivalence classes are given via their representa-
tives: e.g., [a]∨ [b] = [a∨b] where, without loss of generality, the representa-
tives a and b are chosen from the same An, so a∨b is defined in An. So they
still satisfy the defining axioms of an involutive lattice.

• The embeddings en : An → A are given by mapping a to [a].

We denote A also by BN∞(2) and call it the direct limit (leaving the embeddings en
implicit).

Using the theory of initial algebras from theoretical computer science [25, 39, 1],
we can show that BN∞(2) is indeed the desired limit:

Theorem 4.1 The direct limit BN∞(2) of the chain (6) is the least fixed point under
BN: i.e., BN∞(2) is isomorphic to BN(BN∞(2)), and if B is another such nontrivial8

involutive lattice, then BN∞(2) can be embedded into B. The analogous result holds
for the other constructions N,B,N.
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5 The logic

By iterating ‘both’ and ‘neither’, we now have the algebra of truth-values BN∞(2).
But we still need a logic telling us how to reason with these truth-values: we want to
know when an argument that uses sentences having these truth-values is a good one.
We also need this for the applications: If we use these truth-values to model our use
of, say, vague expressions, we also want to know the logic of these expressions, i.e.,
their fundamental principles. And similarly for the other applications.

In subsection 5.1, we find this logic by generalizing (again) the intuitions from
the four-valued case. The guiding idea is that sentence ϕ entails sentence ψ iff, for
every valuation, the value of ϕ is less-or-equal-to the value of ψ—so entailment is,
in a sense, truth-preservation.

In fact, we can consider the logic at each step of the iteration process:

• starting with classical logic: ⊨2,
• moving to FDE: ⊨BN(2),
• continuing with the finitely iterated logics: ⊨BN2(2), ⊨BN3(2), . . .
• and eventually considering the limit logic: ⊨BN∞(2).

This naturally poses the questions whether all these logics really are different or
whether they collapse at some point. After all, in the mentioned previous investiga-
tions of iterating ‘both’ and ‘neither’, the logics collapsed at the second state: i.e.,
the logics of the third and fourth bullet points where identical to that of the second.
In subsection 5.3, we show that here there is no collapse.

Finally, in subsection 5.4, we show that all these infinitely many both-and-neither
logics lie in between the well-known logics first-degree entailment (FDE) and para-
consistent quantum logic (PQL). Whether the limit logic ⊨BN∞(2) is identical to PQL
is an intriguing open problem.

5.1 Defining logical consequence The intuition for defining logical consequence (or
entailment) for four-valued logic is that ϕ ⊨ ψ means that, for every valuation v,
v(ϕ) ≤ v(ψ) [3, 4]. This straightforwardly generalizes to any involutive lattice A
other than BN(2): all that is needed are the operations ∨,∧,¬,0,1 to provide the
order ≤ and to interpret the logical connectives ∨,∧,¬,⊥,⊤. We can also extend
this definition to a set Γ of sentences entailing a sentence ϕ by requiring there to
be a finite subset of Γ whose conjunction entails ϕ . The formal definitions read as
follows.

We use the language of propositional logic: We fix a countably infinite set At
of propositional atoms p0, p1, p2, . . .. The sentences are the atoms and, whenever ϕ
and ψ are sentences, so are ϕ ∨ψ,ϕ ∧ψ,¬ϕ,⊤,⊥. We use p,q,r, . . . as variables
ranging over atoms, and ϕ,ψ,χ, . . . as variables ranging over sentences.

If A = (A,∨,∧,¬,0,1) is an involutive lattice, an A-valuation v is a function
v : At→ A. It is recursively extended to all sentences:

v(ϕ ∨ψ) := v(ϕ)∨ v(ψ) v(⊤) := 1

v(ϕ ∧ψ) := v(ϕ)∧ v(ψ) v(⊥) := 0

v(¬ϕ) := ¬v(ϕ).

Definition 5.1 Let A = (A,∨,∧,¬,0,1) be an involutive lattice. Let Γ be a set of
sentences and ϕ a sentence. Define Γ ⊨A ϕ as: there is a finite subset Γ0 ⊆ Γ such
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that, for all A-valuations v,
^

ψ∈Γ0

v(ψ)≤ v(ϕ).9

We call ⊨A the consequence relation or logic of A.

This definition of logical consequence is in the spirit of algebraic logic (see, e.g.,
[15, 9]). There also is another approach to define logical consequence in the context
of many-valued logic by using designated values (see, e.g., [32, ch. 7]). It coincides
with the above algebraic one for four-valued logic [15]. But generalizing it to iterated
‘both’ and ‘neither’ logics yields quite a wild logic: we discuss this in the next
subsection (but it can also be skipped). That is why we don’t take it as the guiding
generalization.

5.2 Logical consequence via designated values The idea of the designated-value
approach is to declare a subset D of the set of truth-values A to be ‘designated’ or
‘desired’. Hence one requires logical consequence to preserve those: for all valua-
tions, if all the premises are designated, so must be the conclusion. For four-valued
logic BN(2), the designated values are 1 and {0,1}b because it is exactly those that
‘contain truth’. Thus, logical consequence in the sense of preserving designated
values also spells out a sense of truth-preservation. This intuition straightforwardly
generalizes to BN∞(2) as follows:

• Starting point: Truth-values 2. Designated D0 := {1}.
• First iteration: Truth-values BN(2). Designated D1: those {a,b}k with k = b

and either a or b designated (in A0).
• General case: Truth-values BNn+1(2). Designated Dn+1: those {a,b}k with

k = b and either a ∈ Dn or b ∈ Dn.
• Limit case: Truth-values BN∞(2). Designated D∞ :=

S
n en(Dn).

For example, {{0,1}n,{0,1}b}b is designated in BN2(2).
However, the resulting logic is quite wild: Let’s write ⊨Dn (with n ∈ {0,1, . . . ,∞})

for the corresponding designated value consequence relation. As mentioned,
⊨D0=⊨2 and ⊨D1=⊨BN(2). But already at the second iteration, the logics become
very different. On the algebraic definition, we have, for any involutive lattice A, the
much desired conjunction introduction and elimination:

ϕ,ψ ⊨A ϕ ∧ψ ϕ ∧ψ ⊨A ϕ.

But this fails for ⊨D2 .10 Hence it also fails for ⊨D∞ , since ⊨D∞⊆⊨Dn .11 One might
wonder: is this the madness that Meyer was referring to?

Of course, one can also investigate variations of the designated value approach.
For example, one may consider the both-only construction B, so it becomes a gen-
eralization of the logic of paradox [30].12 And one can choose other designated val-
ues: e.g., only the top element, so consequence becomes preserving ‘nothing but the
truth’ [29]. Or one can choose designated values differently for premises and for
conclusions, thus arriving, e.g., at a ‘strict-tolerant’ consequence [7]. This might not
always yield desirable logics, but one beauty of generalizations is that they allow
to tell apart intuitions that coincide in the original case. But, for now, we leave the
designated value approach to future work and focus, for the rest of the paper, on the
more well-behaved algebraic definition.
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5.3 No collapse The logics that we get at each step of iterating ‘both’ and ‘neither’
are ⊨2, ⊨BN(2), ⊨BN2(2), etc., with the limit logic ⊨BN∞(2). In fact, these are increas-
ingly weaker logics, because if we have an embedding f : A → B, then ⊨A⊇⊨B.13 So
we have the chain

⊨2 ⊇ ⊨BN(2) ⊇ ⊨BN2(2) ⊇ . . . ⊇ ⊨BN∞(2) . (7)

As mentioned, a natural question is whether this chain eventually stabilizes. To get
an intuition, let’s check the first two cases.

The first inclusion is proper: Famously, FDE discards many entailments of clas-
sical logic. For example, ⊨2 ϕ ∨¬ϕ and ϕ ∧¬ϕ ⊨2 ψ but ̸⊨BN(2) ϕ ∨¬ϕ (paracom-
pleteness) and ϕ ∧¬ϕ ̸⊨BN(2) ψ (paraconsistency).

The second inclusion now is, on our approach, also proper: while ⊨BN(2) still
satisfies distributivity, ⊨BN2(2) doesn’t anymore. An example involves the ‘Mowgli
sentence’: Let v be a BN2(2)-valuation where p,q,r respectively get the following
values from ‘the middle’ of BN2(2) (see figure 5):

a :=
�
{0,1}n

	
b :=

�
{0,1}n,{0,1}b

	
b c :=

�
{0,1}b

	
.

Then distributivity fails, i.e., p∧ (q∨ r) ̸⊨BN2(2) (p∧q)∨ (p∧ r), because

a∧ (b∨ c) = a ̸≤
�
{0}

	
= (a∧b)∨ (a∧ c).

However, for the other inclusions, it is getting increasingly harder to find coun-
terexamples. After all, what should two sentences ϕ and ψ be such that ϕ entails
ψ in BN999.999(A) but not anymore in BN1.000.000(A)? Still, the main result of this
section is that all these counterexamples must exist:

Theorem 5.2 All inclusions in (7) are proper.

The proof is in appendix C and uses a powerful tool from universal algebra: Jóns-
son’s lemma.

5.4 Comparison to other logics Now that we have a new logic ⊨BN∞(2), we would
like to know how it compares to existing logics—to put it into perspective. Two tight
lower and upper bounds are FDE and PQL: ⊨FDE⊇⊨BN∞(2)⊇⊨PQL. Let’s explain
them in turn.

One the one hand, FDE is characterized by 4 = BN(2): Γ ⊨FDE ϕ iff Γ ⊨4 ϕ [e.g.
15]. By the results of Kalman [21], FDE can equivalently also be characterized by
the class of all distributive involutive lattices: i.e., Γ ⊨FDE ϕ iff, for all distributive
involutive lattices A, Γ ⊨A ϕ .14

On the other hand, paraconsistent quantum logic (PQL) can be characterized by
all—as opposed to all distributive—involutive lattices: Γ ⊨PQL ϕ iff for all invo-
lutive lattices A, Γ ⊨A ϕ [9].15 This logic generalizes—as the name indicates—the
usual quantum logic. The usual quantum logic is based on ortho(modular) lattices
capturing the algebraic structure of measurements (or observable properties) of a
physical system. Paraconsistent quantum logic then considers a more general notion
of measurement (abstracted from so-called effects) which need not satisfy the laws
of non-contradiction anymore (x∧¬x = 0).

Now, the logic of iterated ‘both’ and ‘neither’ sits in between these two logics
FDE and PQL: We already saw ⊨FDE⊋⊨BN∞(2). And, by definition, ⊨BN∞(2)⊇⊨PQL.
(Whether the connection to physics is just a coincidence has to be investigated.) We
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consider it a central open question whether the two logics actually are identical, i.e.,
whether ⊨BN∞(2)=⊨PQL.16

For other logics in this ballpark, see, e.g., [35, 37, 18, 17].

6 Relationships between the constructions

So far we have investigated iterating both-and-neither (BN). However, as we saw in
the applications, we also are interested in iterating neither-only (N), both-only (B),
and comparable-neither-only (N). This section is about the relationships of these
constructions. We will find that, although the constructions are philosophically dif-
ferent, they mathematically are closely related: in the limit, they all give rise to the
very same logic.

Let’s start with the differences. The philosophical motivations for the construc-
tions BN, N, B, and N differ: (1) they have rather dissimilar intended philosophical
interpretations: e.g., databases, truth, and vagueness. (2) Some might object to an
‘inconsistent’ truth-value both true and false, while being friendly toward an ‘incom-
plete’ truth-value neither true nor false. (3) After one iteration, the corresponding
logics are rather different: e.g., with just ‘neither’, one fails excluded middle but
keeps the law of non-contradiction—unlike when also using ‘both’. (4) After several
iterations, the resulting truth-value algebras look quite different: e.g., figure 5 for BN
vs. figure 6 for N.

So how can they be related? We know that N is contained in N which is con-
tained in BN, and N is isomorphic to B. (Because of this isomorphism, we focus
on N,N,BN in the remainder.17) This is expected: the constructions add more—as
some would say, problematic—entities. The unexpected direction is if there would
also be a sense in which BN is contained in N or N. Surprisingly, there is! That is
the main result of this section: For a finite involutive lattice A, we have that BN(A)
cannot be contained in N(A), but it is contained in N2(A)! The embedding maps

{a,b}n 7→ {{a,b}n} {a,b}b 7→ {{a},{b}}n.

With considerably more work—done in appendix D—one can also show that N2(A),
in turn, can be embedded into Nm(A), for some m (which can be quite large). To
summarize:

Theorem 6.1 Let A be an involutive lattice. Then BN(A) can be embedded into
N2(A). And, if A was finite, this can, in turn, be embedded into Nm(A) for some m.

But we not only want to understand the relationships of the constructions at the
level of truth-values. We also want to understand it at the level of logic: i.e., compare
the consequence relations of the limits of these constructions (where the construction
is ‘completed’). The above embeddability result yields the other surprising theorem
that these limit logics in fact are all identical!

Theorem 6.2 ⊨BN∞(2) = ⊨N∞(2) = ⊨N∞(2).

7 Applications

With the acquired theoretical understanding of ‘both’ and ‘neither’, we revisit the
motivating applications from section 2. These were: BN∞(2) for (non-deterministic)
Belnap computer networks, N∞(2) for the revenge paradox, and N∞(2) for higher-
order vagueness.
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Figure 6 The first four iterations of comparable-neither-only N.

We already visualized the first iterations of BN (figures 3–5). Since we here
are also deal with N and N, we visualize in figure 6 the first four iterations of N,
where the first three iterations coincide with N. (The white dots are the image of
the embeddings Nk(e) from the preceding iteration; so the black dots are the ‘new’
elements.)

We saw that, remarkably, the logics of these applications coincide. So, some-
how, these different applications are governed by the very same logical laws. Maybe
this can be interpreted as further evidence of a deeper hidden connection between
the prima facie different paradoxes of truth and vagueness [33]. But let’s leave the
philosophical interpretation of this coincidence to future work and focus first on the
applications themselves.

7.1 Belnap computer networks In section 2.1, we saw that a single Belnap com-
puter which receives classical sources should use the truth-values 4 and hence the
logic FDE. When it comes to reasoning with input from (networks of) Belnap com-
puters, there are two choices. If the input is processed deterministically by accumu-
lation, we get more complex truth-values as described by [36], but the logic remains
FDE. However, if we allow the input to be processed by judging the reliability of
the sources on a case-by-case basis, we get the truth-values BN∞(2) and the logic
⊨BN∞(2), which is properly contained in FDE. So, in short, their difference lies in the
non-deterministic processing of the input sources.
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7.2 Revenge paradox A common criticism of broadly Kripkean theories of truth is
this: Yes, they consistently provide a language with its own truth-predicate, crucially
by rendering the liar sentence neither true nor false. However, they cannot express
this fact: otherwise they could formulate the revenge sentence, which leads to incon-
sistency [2, sec. 4.1.3]. As already suggested in section 2.2, iterating ‘neither’ might
provide a reply. Let’s sketch it step by step.

The first step is the usual setting for theories of truth. We add to our base language
a truth-predicate, i.e., the expressive means to say that a sentence has truth-value 1.
So we can formulate in the language the liar sentence λ1 (here the subscript just
indicates that we are in step 1) which says that the truth-value of sentence λ1 is 0 (or
not 1). Even though there is no two-valued model, the Kripkean solution provides a
three-valued model of the language: assigning truth-values from N(2) to sentences
in a way that respects the connectives and the truth-predicate. In this model, λ1 gets
the value a1 := {0,1}n.

The second step is the setting of the revenge paradox. To counter the mentioned
criticism, we add to our language the expressive resources to say ‘ϕ has truth-value
a’ where ϕ is a sentence and a is in N(2). So we can formulate in this new language
the revenge sentence λ2 which says that the truth-value of sentence λ2 is either {0}
or {0,1}n. Now one would need to explore if an adjusted model construction yields a
consistent model. The idea would be that, in such a model, λ2 gets the value ‘neither
true nor a1’, i.e., a2 :=

�
{1},{0,1}n

	
n, because then λ2 is not {1} and also not {0}

or {0,1}n.
Now we iterate these steps. In step k+ 1, the criticism still complains about the

mismatch of language and truth-values: The language of step k was interpreted in
Nk(2), but some of those truth-values cannot be expressed in the language (e.g., the
truth-value ak of the revenge sentence λk). We add to the language the required
expressive resources. But then we can formulate the revenge sentence λk+1 which
says that the truth-value of sentence λk+1 is in Nk(2) \ {1k}, where 1k is the top
element of Nk(2). Again, one would need an adjusted model construction to find a
consistent model of this extended language by moving to Nk+1(2) and giving λk+1
the value ak+1 :=

�
1k,ak

	
n.18

In these steps, expressivity and revenge play a game of tag: once expressiveness
caught up to express the latest solution to the revenge sentence, revenge produces
a new sentence resulting in new truth-values to which expressiveness has to catch
up again. However, or so the idea goes, by iterating ‘neither’ forever and moving
to N∞(2), we reach a fixed point of this game where the two are in harmony: the
language can express all those truth-values, and all revenge sentences have a truth-
value.

So far, this is just a rough intuitive idea, and it needs to be formally developed
and critically assessed.19 Our point here merely is show that iterating ‘neither’ might
fruitfully be applied to theories of truth.

7.3 Higher-order vagueness In section 2.3, we said that we get a semantics for
higher-order vagueness by iterating ‘neither’ (or, more precisely, N): Whenever we
hedge and want to say that a sentence ϕ actually is in between two truth-values a
and b (which hence must be comparable), we can say that ϕ has truth-value {a,b}n.
Here we discuss if this can be extended to a logic of higher-order vagueness by using
the logic ⊨N∞(2).
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But what exactly should a logic of vagueness do? It should describe when sen-
tences involving vague predicates entail each other. There are two common choices
for the language in which these sentences are formulated. The first choice is a ba-
sic language where we can form (logically atomic) sentences using vague predicates
and have standard logical connectives. Formally, we can take this to be the language
of propositional logic that we have used above (section 5.1). The second choice is
to extend this basic language with a ‘definitely’ or ‘determinately’ operator ∆. (Cf.
Field’s determinacy operator mentioned in section 2.2.) This is to be able to say,
in the language, whether a sentence has borderline status: If ϕ is a sentence, the
sentence ∆ϕ intuitively says that ϕ is definitely the case (and not borderline).

Providing a logic of vagueness for the basic language is considered by some to
be the prime concern—extending it to ∆ being a secondary step [e.g. 22, sec. 1.5].
Our framework delivers: The semantics of the basic language is given by valuations
in N∞(2), which can express higher-order vagueness by allowing to iterate ‘neither’
arbitrarily often. The corresponding logic of vagueness then is ⊨N∞(2). To better
understand this suggestion, let’s compare it in the remainder of this section to two
other prominent approaches and see how the secondary step—interpreting ∆—could
look like.

The first prominent approach is based on strong Kleene logic.20 Here the seman-
tics of the basic language is given by valuations in N(2) (true, false, or neither) and
the logic is ⊨N(2). Concerning the secondary step, the definitely operator is inter-
preted by the function ∆ : N(2)→ N(2) sending {1} to {1} and the other two values
to {0}. A common criticism is that this does not allow for higher-order vagueness:
if ϕ is vague, it seems that also ∆ϕ is vague, but now ∆ϕ always has a classical
truth-value and hence no borderlines. Another way to say this is that ∆∆ϕ ∨∆¬∆ϕ
is a theorem.

The second, arguably most prominent logic of vagueness is (some form of) super-
valuationism.21 The semantics of the basic language is given by judging the truth of
sentences relative to precisifications of the language. Here a precisification is a way
of making the language precise (saying how many grains of sand are needed to form a
heap, etc.). If ϕ is true at all relevant precisifications, it is super-true—which is what
we typically mean by saying that a vague sentence is true. Logical consequence is
preservation of super-truth. Concerning the secondary step, ∆ expresses super-truth
in the object language: so ∆ϕ is true at a precisification if ϕ is super-true. This gets
many things right, but one criticism is that still ∆∆ϕ ∨∆¬∆ϕ is a theorem.22

Thus, our approach generalizes the first approach, aiming to fix the issue of
higher-order vagueness by iterating neither. But can it perform the secondary step of
providing a new function interpreting ∆? The second approach offers an idea.

For the supervaluationist, ∆ϕ means that ϕ is determined in the sense that ϕ is
true under all precisifications. In other words, even if other ways of evaluating ϕ
become available, ϕ will still get the same truth-value. Reformulated in our setting,
∆ϕ says that even if further borderline truth-values become available, ϕ will keep the
truth-value that it currently has. Indeed, this seems characteristic of vague predicates:
Consider a borderline heap and the sentence ϕ = ‘This is a heap’. If only the classical
truth-values 0 and 1 are available, we reluctantly give ϕ one of those classical truth-
values, but once the borderline truth-value {0,1}n becomes available, we happily
assign it to ϕ . So ∆ϕ indeed is not true, as expected.
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Can we turn this intuition into a function ∆ : N∞(2) → N∞(2)? Many choices
can be discussed, but a straightforward one maps [a] to [{a}], with the following
explanation. Assume ϕ has been assigned to truth-value a in, say Nk(2). This means
that, after deliberation, we found enough truth-values at the k-th iteration of ‘neither’
to confidently give ϕ the truth-value a. Now we should give ∆ϕ a truth-value. The
definitely operator makes us consider a further iteration of ‘neither’, qua expressive
devise to talk about borderline status. So we should pick a truth-value for ∆ϕ in
Nk+1(2). But since ϕ received the definite truth-value a, we now choose its copy
{a} and need not resort to any new borderline value. So ∆ϕ has the truth-value {a}.
Thus, in N∞(2), we assign ϕ to [a] and ∆ϕ to [{a}].

It turns out that ∆ : N∞(2)→N∞(2) mapping [a] to [{a}] is not just a well-defined
function; it even is an involutive lattice embedding.23 This has both desired con-
sequences but also some in need of discussion. Among the desired ones are that
1∞ (and only that) is mapped to 1∞. So ∆ϕ is true iff ϕ is true (and nothing but
true). Thus, ∆ acts much like a truth-predicate, as one would expect if it expresses
something like super-truth.24 The same can be said for 0∞ and super-falsity. Also,
as desired, ∆∆ϕ ∨∆¬∆ϕ is not a theorem.25 And since ∆ preserves ∧, we have that
∆(ϕ ∧ψ) is equivalent to ∆ϕ ∧∆ψ . The same holds for ∨, which is more debat-
able.26 However, the most debatable consequence is that ¬∆ϕ is equivalent to ∆¬ϕ .
The obvious objection is that, when talking about a borderline heap, ‘not definitely a
heap’ is not the same as ‘definitely not a heap’: the former seems true, while the latter
seems false. Further work should explore this objection: Is it decisive, thus dismiss-
ing the above prima facie plausible interpretation of ∆? (This would also constitute a
philosophical insight, albeit negative one.) Should the above straightforward choice
for ∆ be refined? Can the objection be explained away, since ‘not’ doesn’t have a
classical meaning anymore due to the presence of non-classical truth-values?27 Or
are we looking at an argument that there are (at least) two senses of ‘definitely’ (one
on which ¬∆ϕ and ∆¬ϕ are not equivalent and one on which they are)?

To summarize, the iterated neither approach suggests a logic of higher-order
vagueness for the basic language. It may be extended to also interpret the defi-
nitely operator, but more discussion is needed. Our goal here was to argue that this
suggestion seems fruitful. Future works needs to assess it in detail.

8 Conclusion

We conclude with a brief summary and open questions. Motivated by, among others,
the higher-order paradoxes of truth and vagueness, we newly explicated iterating
‘both’ and ‘neither’ as a functor BN on involutive lattices. Special cases are iterating
only neither N or only neither applied to comparable truth-values N. Each iteration
of BN changes the logic, and the logic obtained in the limit of iteration lies between
FDE and PQL. Surprisingly, the limit logics of BN, N, and N are all identical even
though differing at finite stages. These results promise new and fruitful applications
to the paradoxes of vagueness and truth. The main technical open question is whether
the logic of iterated both-and-neither is paraconsistent quantum logic. The main
philosophical open question is to work out the sketched applications.
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Appendix A Both and neither algebras

The objects that we will be dealing with are involutive lattices, which we always
assume to be bounded (definition 3.1), and their morphisms are:

Definition A.1 Let A and B be involutive lattices. An involutive lattice homomor-
phism is a function f : A → B such that, for all x,y ∈ A,

f (x∨ y) = f (x)∨ f (y) f (¬x) = ¬ f (x) f (0) = 0.

These conditions already imply the other two expected preservation conditions:
f (x∧ y) = f (x)∧ f (y) and f (1) = 1. We say f is an embedding if it additionally is
injective and an isomorphism if it additionally is bijective. If there is an embedding
from A to B, we write A ,→ B. We say A is a subalgebra of B if A ⊆ B and the
inclusion function (mapping a ∈ A to a ∈ B) is an embedding.

For k ≥ 0, define

{a,b}k :=

(
{a} if a = b
({a,b},k) if a ̸= b.

So if {a,b}k = {c,d}l , we have {a,b} = {c,d}; a fact that we often use without
mentioning.

Theorem A.2 Let A = (A,∨,∧,¬,0,1) be an involutive lattice. Let n ≥ 1 and
write n = {0, . . . ,n−1}. Let ⋆ : n → n be an involution (i.e., a function with x⋆⋆ = x).
Define

• A′ =
�
{a,b}k : a,b ∈ A,k ∈ n

	

• {a,b}k ≤′ {c,d}l iff {a,b}k = {c,d}l or a∨b ≤ c∧d
• ¬′{a,b}k = {¬a,¬b}k⋆

• 0′ = {0,0}0 and 1′ = {1,1}0

Then Nn,⋆(A) := (A′,∨′,∧′,¬′,0′,1′) is an involutive lattice where

{a,b}k ∨′ {c,d}l =





{c,d}l if {a,b}k ≤′ {c,d}l

{a,b}k if {a,b}k ≥′ {c,d}l

{a∨b∨ c∨d}0 if x and y are ≤′-incomparable

and similarly for ∧.

So theorem 3.2 is the special case where n = {0,1} and ⋆= id (the identity func-
tion). We will need the present more general formulation in section D.

Proof Step 1: Show that ≤′ is a partial order with least element 0′ and greatest
element 1′. By construction, ≤′ is reflexive. For antisymmetry, given x = {a,b}k and
y = {c,d}l with x ≤′ y and y ≤′ x, we need to show x = y. If one of x ≤′ y or y ≤′ x
holds due to the first clause, we immediately have x = y, so assume both hold due to
the second clause. Then

a∨b ≤ c∧d ≤ c∨d ≤ a∧b ≤ a∨b,

so all the terms are identical. In particular, a∧b = a∨b, which implies a = b. And
c∧d = c∨d, which implies c = d. So a = a∨b = c∨d = c. Hence a = b = c = d,
and x = {a,b}k = {a}= {c}= {c,d}l = y, as needed.
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For transitivity, given x = {a,b}k, y = {c,d}l , and z = {e, f}m with x ≤′ y and
y ≤′ z, we need to show x ≤′ z. If one of the inequalities is due to the first clause, this
is trivial, so assume both are due to the second. Then

a∨b ≤ c∧d ≤ c∨d ≤ e∧ f ,

so x ≤′ z, as needed.
Finally, 0′ = {0,0}0 is the ≤′-least element of A′, because for any {a,b}k, we have

0∨ 0 = 0 ≤ a∧ b. Similarly, 1′ = {1,1}0 is the ≤′-greatest element of A′, because
for {a,b}k, we have a∨b ≤ 1 = 1∧1.

Step 2: Show that x∨′ y is the ≤′-least upper bound of {x,y}, and dually for ∧′.
Write x = {a,b}k and y = {c,d}l . The claim is trivial if x and y are ≤′-comparable,
so assume that they are incomparable. We need to show that z := {a∨b∨ c∨d}0 is
the ≤′-least upper bound of {x,y}.

First, it is an upper bound: We have a∨b≤ a∨b∨c∨d, so x≤′ z. Similarly, y≤′ z.
To show z is the least upper bound, let w= {e, f}m be another upper bound, and show
z ≤′ w. Note that x ̸= w, since otherwise x = w ≥′ y contradicts incomparability; and
similarly y ̸= w. So x ≤′ w must be because a∨b ≤ e∧ f ; and y ≤′ w must be because
c∨d ≤ e∧ f . Hence a∨b∨ c∨d ≤ e∧ f , which implies z ≤ w.

For ∧ we reason dually.
Step 3: Show that ¬′ satisfies the axioms for an involutive lattice. First, we show

¬′¬′x = x. Write x = {a,b}k. Then

¬′¬′{a,b}k = ¬′{¬a,¬b}k⋆ = {¬¬a,¬¬b}k⋆⋆ = {a,b}k.

Second, we show that x ≤′ y implies ¬′y≤′ ¬′x. Write x = {a,b}k and y= {c,d}l .
If x ≤′ y because x = y, the claim is trivial, so assume x ≤′ y holds due to the second
clause. So a∨b ≤ c∧d. Since A is an involutive lattice,

¬c∨¬d = ¬(c∧d)≤ ¬(a∨b) = ¬a∧¬b.

Hence ¬′y = {¬c,¬d}l⋆ ≤′ {¬a,¬b}k⋆ = ¬′x.

The following two propositions provide important subalgebras of Nn,⋆(A).

Proposition A.3 In the setting of theorem A.2, define

N≤
n,⋆(A) :=

�
{a,b}k ∈ Nn,⋆(A) : a and b are ≤-comparable

	

Then N≤
n,⋆(A) is a subalgebra of Nn,⋆(A) (with the inherited operations).

Proof We need to show that N≤
n,⋆(A) is closed under 0′,¬′,∨′. Note that, if a ∈ A,

then {a} = {a,a}0 is in N≤
n,⋆(A), because a ≤ a. In particular, 0′ ∈ N≤

n,⋆(A). More-
over, if x = {a,b}k is in N≤

n,⋆(A), then either a ≤ b or a ≥ b, so either ¬a ≥ ¬b or
¬a ≤ ¬b, so ¬′x = {¬a,¬b}k is in N≤

n,⋆(A). So assume x = {a,b}k and y = {c,d}l

are in N≤
n,⋆(A), and show that x∨′ y is, too. If x and y are ≤′-comparable, this is

trivial. If they are incomparable, then x∨′ y = {a∨ b∨ c∨ d}0 which is in N≤
n,⋆(A),

as noted.

Proposition A.4 In the setting of theorem A.2, Nn,id(A) is a subalgebra of
Nn+1,id(A).
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Proof It is a subset: If {a,b}k ∈ Nn,id(A), then a,b ∈ A and 0 ≤ k < n < n+ 1,
so {a,b}k ∈ Nn+1,id(A). And the inclusion is an embedding: first applying the alge-
braic operation of Nn,id(A) and then mapping is the same as first mapping and then
applying the algebraic operation of Nn+1,id(A).

The both and neither constructions that we are particularly interested in (as discussed
in section 3.4) are the following special cases.

Definition A.5 Given an involutive lattice A and n ≥ 1, write Nn(A) := Nn,id(A)
and N≤

n (A) := N≤
n,id(A). We call:

• BN(A) := N2(A) the both-and-neither algebra of A
• N(A) := N1(A) the neither-only algebra of A
• N(A) := N≤

1 (A) the comparable-neither-only algebra of A.

So N(A) is a subalgebra of N(A), which is a subalgebra of BN(A).

Appendix B Fixed points

For this section, let n ≥ 1 and let ⋆ be an involution on {0, . . . ,n−1}. Let F be Nn,⋆
or N≤

n,⋆. We want to understand the fixed points of the construction F.
To do so, the following category-theoretic language will be useful (but not nec-

essary: it just highlights the more general ideas behind the proofs). Let C be the
category whose objects are nontrivial involutive lattices (nontrivial means that the
least element 0 is distinct from the greatest element 1) and whose morphisms are
involutive lattice embeddings. (Taking all involutive lattice homomorphisms as mor-
phisms does not work as intended here.)

We first observe that the construction F is ‘compositional’: F is a functor from C
to C (i.e., an endofunctor on C).

Proposition B.1 If f : A → B is an involutive lattice embedding, then

Nn,⋆( f ) : Nn,⋆(A)→ Nn,⋆(B)

{a,b}k 7→ { f (a), f (b)}k

is an involutive lattice embedding. This remains true when adding ≤.

Proof Write g :=Nn,⋆( f ). This is injective: If { f (a), f (b)}k = { f (c), f (d)}l , then
{ f (a), f (b)}= { f (c), f (d)}, so, by injectivity of f , {a,b}= {c,d}. If f (a) ̸= f (b),
then k = l, so {a,b}k = {c,d}l . And if f (a) = f (b), then a = b and hence c = d, so
{a,b}k = {a}= {c}= {c,d}l .

Preserving the top-element: g({1,1}0) = { f (1), f (1)}0 = {1,1}0.
Preserving negation: We have

g(¬{a,b}k) = g({¬a,¬b}k⋆) = { f (¬a), f (¬b)}k⋆

= {¬ f (a),¬ f (b)}k⋆ = ¬{ f (a), f (b)}k = ¬g({a,b}k).

Preserving meet: First note that the following equivalences
{a,b}k ≤ {c,d}l

iff {a,b}k = {c,d}l or a∨b ≤ c∧d
iff g({a,b}k) = g({c,d}l) or f (a)∨ f (b)≤ f (c)∧ f (d) (using the injectivity of

g and the meet preservation and injectivity of f )
iff g({a,b}k)≤ g({c,d}l .
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We need to show g({a,b}k ∧{c,d}l) = g({a,b}k)∧g({c,d}l). This is immediate if
{a,b}k and {c,d}l are comparable, so assume they are not, hence also g({a,b}k) and
g({c,d}l) are incomparable. So

g({a,b}k ∧{c,d}l) = g({a∧b∧ c∧d}0) = { f (a∧b∧ c∧d)}0

= { f (a)∧ f (b)∧ f (c)∧ f (d)}0 = g({a,b}k)∧g({c,d}l).

Finally, g restricts to a map N≤
n,⋆(A)→ N≤

n,⋆(B), because if a and b are comparable,
so are f (a) and f (b).

Next, we can naturally view A to be contained in N≤
n,⋆(A), and hence also in Nn,⋆(A).

(So we might call the endofunctor F inflationary.)

Proposition B.2 Let A be an involutive lattice. Then

e : A → N≤
n,⋆(A)⊆ Nn,⋆(A)

a 7→ {a}= {a,a}0

is an involutive lattice embedding, which we call the natural embedding.

Proof By construction, e(1) = {1,1}0 = 1′. Moreover,

e(¬a) = {¬a}= {¬a,¬a}0⋆ = ¬′{a,a}0 = ¬′e(a).

Finally, for a,b ∈ A, we need to show e(a∨b) = e(a)∨′ e(b). First note that a ≤ b iff
{a}≤′ {b}. So, if a and b are ≤-comparable, the claim follows, and it they are not,
also e(a) and e(b) are not ≤′-comparable, so e(a∨b) = {a∨b}0 = e(a)∨ e(b).

To find the least fixed point for F, we use the idea that it is the initial algebra for the
endofunctor F on the category C. In good cases, the initial algebra can be obtained
as the colimit of applying the endofunctor to the initial object of the category. Con-
veniently, our C has an initial object, namely 2: i.e., for every nontrivial involutive
lattice A, there is exactly one embedding h : 2 → A (it maps 0 to 0A and 1 to 1A).

Theorem B.3 Write F for Nn,⋆ or N≤
n,⋆. The direct limit A of

2 F(2) F2(2) F3(2) . . .e F(e) F2(e) F3(e)

is the least nontrivial fixed point of F.

Proof For n ≤ m, write An := Fn(2) and enm := Fm−1 ◦ . . .◦Fn(e) (and enn := id).
So (An,enm) is a direct system. The direct limit A is constructed as usual for universal
algebras (described in section 4), with embeddings en : An → A,a 7→ [a].

Toward building a cocone (F(A), fn), consider the following diagram:

F(A)

2 F(2) F2(2) . . .e

F(e0)◦e

F(e)

F(e0)

F(e1)

F(e1)

The first triangle on the left commutes by construction, and the others since
F(e0) = F(e1 ◦ e01) = F(e1) ◦ e12, etc. So, writing fn for the arrow from An to
F(A) in the above diagram, we have fn = fm ◦ enm, so (F(A), fn) indeed forms a
cocone.
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So there is a mediating morphism u : A → F(A), mapping [a] to fn(a) for n such
that a ∈ An. We show that the embedding u actually is an isomorphism, i.e., we show
that it is surjective. Indeed, if {[a], [b]}k is in F(A), let, without loss of generality, n
be such that a,b ∈ An. Then {a,b}k ∈ F(An). So [{a,b}k] ∈ A and

u
�
[{a,b}k]

�
= fn+1

�
{a,b}k

�
=
�

en(a),en(b)
	

k =
�
[a], [b]

	
k.

So A is indeed a fixed point. To show it is least, let B be another non-trivial one,
with isomorphism i : F(B)→ B. We build a cocone (B, fn) as follows. Consider

B F(B) F2(B) F3(B) . . .

2 F(2) F2(2) F3(2) . . .

i F(i) F2(i) F3(i)

e

h

F(e)

F(h)

F2(i)

F2(h)

F3(e)

F3(h)

Since h is the only embedding from 2 → B, the first square commutes. Hence, since
F is a functor, also the other squares commute. So, defining fn : An → B as the
shortest path in the diagram from An to B, we get that (B, fn) is indeed a cocone
( fn = fm ◦ enm). The mediating morphism u : A → B is the desired embedding.

Appendix C Congruences, simplicity, and varieties

In this section, we prove theorem 5.2 from section 5.3: that, for all n, ⊨BNn(2) is a
proper superset of ⊨BNn+1(2).

To do so, we need three central concepts from universal algebra: congruence,
simplicity, and variety. (For a textbook, see, e.g., [5].) Let A = (A,∨,∧,¬,0,1) be
an involutive lattice. A congruence θ on A is an equivalence relation such that, for
all a,b,a′,b′ ∈ A,

If aθa′ and bθb′, then a∨bθa′ ∨b′, a∧bθa′ ∧b′, and ¬aθ¬a′.
The set of congruences on A is denoted Con(A). The identity relation ∆ (i.e., a∆b
iff a = b) and the trivial relation (i.e., a∇b for all a,b ∈ A) are always in Con(A). If
they are the only congruences on A (i.e., Con(A) = {∆,∇}), then A is called simple.
For example, 2 is simple. Finally, a variety is a nonempty class of algebras of the
same type (e.g., involutive lattices) that is closed under taking products, subalgebras,
and homomorphic images. The smallest variety containing a class of algebras K is
denoted Var(K).

The plan of the proof is as follows: We first show a key lemma (lemma C.1)
from which we deduce that BN preserves simplicity: if A is simple, so is BN(A)
(proposition C.2). Then we derive theorem 5.2 using standard tools from universal
algebra. (And we end this section with a lemma on the interplay of varieties and
logic that is useful in the main text.)

Visually, the key lemma says: In a ‘diamond’ in BN(A) as in figure 7, if one of
the depicted lines is a θ -relation, then all of the lines are θ -relations. We write k′ for
the opposite of k (i.e., if k = 0, then k′ = 1, and if k = 1, then k′ = 0).

Lemma C.1 Let A be an involutive lattice and θ ∈ Con(BN(A)).
1. If {a,b}kθ{a∨b}, then all of {a∧b},{a,b}k,{a,b}k′ ,{a∨b} are θ -related.
2. The same follows if {a∧b}θ{a,b}k.

Proof We show (1). (Then (2) will be immediate.) If A is the trivial involutive
lattice, then also BN(A) is trivial, so all these elements are identical and the claim
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{a∨b}

{a,b}0 {a,b}1

{a∧b}

Figure 7 A diamond in BN(A).

follows. So let A be nontrivial (i.e., 0 ̸= 1). Similarly, if a= b, then all these elements
are identical, and the claim follows. So let a ̸= b. The crucial trick is to consider the
elements {0,a∨b}k and {0,a∨b}k′ . Though, we need to consider three cases.

Case 1: {a,b} ̸= {0,a ∨ b}. Write x := {a,b}k and yk := {0,a ∨ b}k and
yk′ := {0,a∨b}k′ .

Let l ∈ {k,k′}. Then x and yl are incomparable: By the case assumption, they
are not identical, and a∨ b ̸≤ 0∧ (a∨ b) (otherwise a∨ b = 0, so a = 0 = b) and
0 ∨ (a ∨ b) ̸≤ a ∧ b (otherwise a ∧ b = a ∨ b, which implies a = b). Moreover,
yl ≤ {a∨b} (since 0∨ (a∨b)≤ a∨b). So

yl = yl ∧{a∨b} θ yl ∧{a,b}k = {0∧ (a∨b)∧a∧b}= {0}.
Hence yk θ {0} θ yk′ . Moreover, yk and yk′ are incomparable: We have

a∨ b ̸= 0 (otherwise a = 0 = b), so yk and yk′ cannot be identical (since k ̸= k′)
and 0∨ (a∨b) ̸≤ 0∧ (a∨b) (since a∨b ̸≤ 0). So

{0}= {0}∨{0} θ yk ∨ yk′ = {0∨ (a∨b)∨0∨ (a∨b)}= {a∨b}.
Now all the elements of the diamond are ≤-between {0} and {a∨b}, so all of them
are θ -related.

Case 2: {a,b} ̸= {1,a∧ b}. We can play a similar trick: Write x := {a,b}k and
yk := {1,a∧b}k and yk′ := {1,a∧b}k′ . Similarly to the first case, yk θ {1} θ yk′ and
hence {1} θ {a∧b}. Since the elements of the diamond are ≤-between {a∧b} and
{1}, they are all θ -related.

Case 3: If neither case 1 nor case 2 obtains, then {0,a∨b}= {a,b}= {1,a∧b}.
Since 0 ̸= 1 and a∨b ̸= a∧b (otherwise a= b), we must have 0= a∧b and 1= a∨b.
Now the trick is to consider {0,1}k′ . It is incomparable with {a,b}k: they cannot be
identical (since k ̸= k′) and 1 = a∨b ̸≤ 0∧1 and 0∨1 ̸≤ a∧b = 0. So

{0,1}k′ = {0,1}k′ ∧{1} θ {0,1}k′ ∧{a,b}k = {0∧1∧a∧b}= {0}.
Hence also ¬{0,1}k′ θ ¬{0}= {1}. Since ¬{0,1}k′ = {0,1}k′ , we have {0} θ {1},
hence all elements are θ -related (since they are ≤-between {0} and {1}).

It remains to show (2): If {a∧b}θ{a,b}k, then

{a,b}k′ = {a,b}k′ ∨{a∧b} θ {a,b}k′ ∨{a,b}k = {a∨b},
so (1) implies the desired conclusion.

Proposition C.2 Let A be an involutive lattice. If A is simple, then BN(A) is
simple.
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Note, though, that this is neither true for N nor for N: for example, A :=N(2) =N(2)
is simple, but N(A) = N(A) is not (it is depicted in the top-right of figure 6, and we
can identify the three black dots).

Proof Using the natural embedding e : A → BN(A), define a function

· : Con(BN(A))→ Con(A) θ 7→ θ

where θ is defined by: aθb iff e(a)θe(b). Note that, since e is a homomorphism, θ
is indeed a congruence. It suffices to show that this function is injective: then also
Con(BN(A)) can have at most two elements.

Let θ ,ϑ ∈ Con(BN(A))) with θ ⊆ ϑ and show θ ⊆ ϑ . So assume x := {a,b}k
and y := {c,d}l are θ -related, and show xϑy.

If x and y are incomparable,

{a∧b∧ c∧d}= x∧ y θ x θ x∨ y = {a∨b∨ c∨d}
so a∧b∧c∧d and a∨b∨c∨d are θ -related, hence also ϑ -related, so {a∧b∧c∧d}
and {a∨ b∨ c∨ d} are ϑ -related, so the ≤-between elements x and y also are ϑ -
related, as needed.

So assume x and y are comparable, say x ≤ y. If x = y, we have xϑy, so assume
x ̸= y. Hence a∨b ≤ c∧d. Since {a,b}k ≤ {a∨b}≤ {c∧d}≤ {c,d}l and xθy, they
are all θ -related. So lemma C.1 implies {a∧ b}θ{a∨ b}θ{c∧ d}θ{c∨ d}. Hence
a∧b and c∨d are θ -related, hence ϑ -related, so {a∧b}ϑ{c∨d}. So the ≤-between
elements x and y also are ϑ -related, as needed.

Now we can prove theorem 5.2 with standard methods from universal algebra.

Proof of theorem 5.2 Given n, we show ⊨BNn(2) ̸=⊨BNn+1(2). Since 2 is simple and
BN preserves this, we know that all BNn(2) are simple.

Now we apply (a corollary of) Jónsson’s lemma [e.g. 5, 149]. It states the fol-
lowing (definitions afterward): If K is a finite set of finite algebras and Var(K) is
congruence-distributive, then the subdirectly irreducible algebras of Var(K) are in
HS(K). We choose K := {BNn(2)}. Then Var(K) is congruence-distributive, be-
cause it is ‘lattice-based’. Finally, being simple implies being subdirectly irreducible
[5, 59]. So BNn+1(2) cannot be in Var(K): Otherwise, Jónsson’s lemma implies that
it is in HS(K), which is the set of homomorphic images of subalgebras of K; but all
of these have cardinality ≤ |BNn(2)| and |BNn+1(2)|> |BNn(2)|.

Next, by Birkhoff’s theorem [5, 79], varieties are precisely equational classes,
which means here that there is a set Σ of identities in the language of invo-
lutive lattices such that Var(K) is precisely the set of involutive lattices sat-
isfying these identities. Since BNn+1(2) ̸∈ Var(K), there must be an identity
ϕ(p1, . . . , pn) = ψ(p1, . . . , pn) that holds in BNn(2) (and in all other members of
Var(K)) but not in BNn+1(2). But this means that the sentences ϕ and ψ are
⊨BNn(2)-equivalent (i.e., ϕ ⊨BNn(2) ψ and ψ ⊨BNn(2) ϕ) but not ⊨BNn+1(2)-equivalent
(i.e., either ϕ ̸⊨BNn+1(2) ψ or ψ ⊨BNn+1(2) ϕ). Hence ⊨BNn+1(2) ̸= ⊨BNn(2).

We also state a basic lemma on the interplay between varieties and logics for refer-
ence in the main text.

Lemma C.3 Let A be an involutive lattice and V a variety of involutive lattices.
Write Γ ⊨V ϕ iff, for all A ∈V , Γ ⊨A ϕ . Then
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1. Γ ⊨A ϕ iff Γ ⊨Var(A) ϕ .
2. Var(A) =V iff ⊨V=⊨A.

Proof Concerning (1), since A ∈ Var(A), the right-to-left direction is trivial. For
the other direction, assume Γ ⊨A ϕ , let B ∈ Var(A), and show Γ ⊨B ϕ . By the as-
sumption, there is a finite Γ0 such that, for all A-valuations v,

V
ψ∈Γ0

v(ψ) ≤ v(ϕ).
Let p = (p1, . . . , pn) be the atoms occurring in the formulas of Γ0 and in ϕ . ThenV

ψ∈Γ0
ψ(p)∨ ϕ(p) = ϕ(p) is an identity satisfied in A. A basic lemma of uni-

versal algebra says that Var(A) satisfies the same identities as A [5, 72]. In par-
ticular, B satisfies the above identity, which means that, for any B-valuation w,V

ψ∈Γ0
w(ψ)≤ w(ϕ), as needed.

Concerning (2), we have, by (1), that ⊨A=⊨Var(A). So we need to show Var(A)=V
iff ⊨V=⊨Var(A). If Var(A) = V , then trivially ⊨V=⊨Var(A). And if ⊨V=⊨Var(A), then,
for every identity ϕ =ψ , it is satisfied in each algebra of V (i.e., ϕ ⊨V ψ and ψ ⊨V ϕ)
iff it is satisfied in each algebra of Var(A) (i.e., ϕ ⊨Var(A) ψ and ψ ⊨Var(A) ϕ). Since
varieties are equational classes, this means V = Var(A).

Appendix D Embeddings

In this section, we prove theorem 6.1 (saying: if A is an involutive lattice, then
BN(A) ,→ N2(A) and, if A is finite, N2(A) ,→ Nm(A) for some m), and theorem 6.2
(saying: ⊨BN∞(2) = ⊨N∞(2) = ⊨N∞(2)).

The proof of theorem 6.1 is in three steps (D.1–D.3) before putting everything
together in step D.4, where we also prove theorem 6.2 as a corollary. The theo-
rems established in the first three steps are also independently interesting as they go
beyond just showing theorem 6.1.

D.1 Embedding BN into N: finding more space

Theorem D.1 Let A be an involutive lattice and n ≥ 1. The following defines an
embedding

e : Nn+1(A)→ (Nn)
2(A)

{a,b}k 7→
(
{{a,b}k}0 if 0 ≤ k < n
{{a}0,{b}0}0 if k = n

The embedding restricts to an embedding N≤
n+1(A)→ (N≤

n )
2(A).

Proof Note that e is well-defined: The definition is independent of the order of
a and b, and if a = b, the two cases agree. And e preserves the top element:
e({1,1}0) = {{1,1}0}0. Also, e preserves negation: Given {a,b}k, we have, if k < n
that

e(¬{a,b}k) = {{¬a,¬b}k}0 = ¬{{a,b}k}0 = ¬e({a,b}k),

and if k = n, then

e(¬{a,b}k) =
�
{¬a}0,{¬b}0

	
0 = ¬

�
{a}0,{b}0

	
0 = ¬e({a,b}k).

What requires work is to show that e preserves ∧. As a first step, we show that e
is an order-embedding:

{a,b}k ≤ {c,d}l iff e({a,b}k)≤ e({c,d}l).
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(In particular, this shows that e is injective.)
(⇒). If {a,b}k ≤ {c,d}l holds because they are identical, the claim is im-

mediate, so assume a∨ b ≤ c∧ d. Note that e({a,b}k) ≤ {{a∨ b}0}0: If k < n,
we have e({a,b}k) = {{a,b}k}0 ≤ {{a ∨ b}0}0 (using the natural embedding).
If k = n, then e({a,b}k) = {{a}0,{b}0}0 ≤ {{a ∨ b}0}0, where the inequal-
ity holds since {a}0 ∨ {b}0 = {a ∨ b}0 (by the natural embedding). Similarly,
{{c∧d}0}0 ≤ e({c,d}l). So the claim follows since {{a∨b}0}0 ≤ {{c∧d}0}0.

(⇐). We analyze the assumption e({a,b}k)≤ e({c,d}l) in four cases.
Case 1: k < n and l < n. Then {{a,b}k}0 ≤ {{c,d}l}0, which implies

{a,b}k ≤ {c,d}l .
Case 2: k < n and l = n. Then {{a,b}k}0 ≤ {{c}0,{d}0}0. If this holds

because they are identical, then {c} = {a,b} = {d}, so a = b = c = d, so
{a,b}k = {a}= {c}= {c,d}l , as needed. If they are not identical, then

{a,b}k ≤ {c}0 ∧{d}0 = {c∧d}0 ≤ {c,d}l .

Case 3: k = n and l < n. Similar.
Case 4: k = n and l = n. Then {{a}0,{b}0}0 ≤ {{c}0,{d}0}0. If this holds

because they are identical, then {a,b} = {c,d}, so {a,b}k = {c,d}l , as needed. If
they are not identical, then

{a,b}k ≤ {a∨b}0 = {a}0 ∨{b}0 ≤ {c}0 ∧{d}0 = {c∧d}0 ≤ {c,d}l .

Now, it remains to show, for any {a,b}k and {c,d}l that

e
�
{a,b}k ∧{c,d}l

�
= e

�
{a,b}k

�
∧ e

�
{c,d}l

�
.

If {a,b}k and {c,d}l are comparable, this follows from monotonicity. So assume
they are incomparable. So

e
�
{a,b}k ∧{c,d}l

�
= e

�
{a∧b∧ c∧d}0

�
= {{a∧b∧ c∧d}0}0.

By the intermediate claim, also e
�
{a,b}k

�
and e

�
{c,d}l

�
are incomparable. To com-

pute e
�
{a,b}k

�
∧ e

�
{c,d}l

�
and show that it equals {{a∧b∧ c∧d}0}0 we consider

the different cases.
Case 1: k < n and l < n. Then

e
�
{a,b}k

�
∧ e

�
{c,d}l

�
=
�
{a,b}k ∧{c,d}l

	
0 =

�
{a∧b∧ c∧d}0

	
0,

as needed.
Case 2: k < n and l = n. Then

e
�
{a,b}k

�
∧ e

�
{c,d}l

�
=
�
{a,b}k ∧{c}0 ∧{d}0

	
0 =

�
{a,b}k ∧{c∧d}0

	
0.

We cannot have {a,b}k ≤ {c∧d}0: otherwise, if they are identical, a = c∧d = b,
so a∨ b ≤ c∧ d, so {a,b}k ≤ {c,d}l are comparable; and if they are not identical,
a∨b ≤ c∧d, and {a,b}k ≤ {c,d}l again are comparable.

If {a,b}k ≥ {c ∧ d}0, then, since they cannot be identical, c ∧ d ≤ a ∧ b, so�
{a,b}k ∧{c∧d}0

	
0 =

�
{c∧d}0

	
0 =

�
{a∧b∧ c∧d}0

	
0, as needed.

If {a,b}k and {c∧d}0 are incomparable, then
�
{a,b}k ∧{c∧d}0

	
0 =

�
{a∧b∧ c∧d}0

	
0,

as needed.
Case 3: k = n and l < n. Similar.
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Case 4: k = n and l = n. Then

e
�
{a,b}k

�
∧ e

�
{c,d}l

�
=
�
{a}0 ∧{b}0 ∧{c}0 ∧{d}0

	
0 =

�
{a∧b∧ c∧d}0

	
0,

as needed.
Finally, to show that e restricts to N≤

n+1(A) → (N≤
n )

2(A) we need to show, for
{a,b}k in N≤

n+1(A), that e({a,b}k) is in (N≤
n )

2(A) (it then will still be an embedding).
By definition, a and b are comparable in A. First consider the case k < n. Then
e({a,b}k) = {{a,b}k}0. Since a and b are comparable, {a,b}k ∈ N≤

n (A). Hence,
by the properties of the natural embedding, {{a,b}k}0 ∈ (N≤

n )
2(A), as needed. Now

consider the case k = n. Then, by the properties of the natural embedding, also {a}0
and {b}0 are comparable in N≤

n (A), so e({a,b}k) = {{a}0,{b}0}0 ∈ (N≤
n )

2(A), as
needed.

D.2 Embedding N into N≤
n,⋆: squeezing into intervals

Theorem D.2 Let A be a finite involutive lattice. Let

i :
�
{a,b} : a,b ∈ A

	
→ {0, . . . ,n−1}=: n

be a bijection. Define the involution ⋆ : n → n by mapping k to i({¬a,¬b}) where
k = i({a,b}). Then the following defines an embedding

e : N1(A)→ N≤
n,⋆(A)

{a,b}0 7→
�

a∧b,a∨b
	

i({a,b}).

Proof Well-defined: First, ⋆ is an involution since, for k with k = i({a,b}), we
have k⋆⋆ = i({¬a,¬b})⋆ = i(¬¬a,¬¬b}) = i({a,b}) = k. And e is well-defined:
Since a∧b ≤ a∨b in A, e({a,b}) is indeed an element of N≤

n,⋆(A), and the definition
of e doesn’t depend on the order of a and b.

Injective: Assume {a ∧ b,a ∨ b}i({a,b}) = {c ∧ d,c ∨ d}i({c,d}), and show that
{a,b}0 = {c,d}0. If {a ∧ b,a ∨ b}i({a,b}) is a singleton, then a = b and also
{c∧d,c∨d}i({c,d}) is a singleton, so c = d. Hence a = b = c = d, and the claim fol-
lows. If {a∧b,a∨b}i({a,b}) is not a singleton, then a ̸= b and also {c∧d,c∨d}i({c,d})
is not a singleton and c ̸= d. So i({a,b}) = i({c,d}), and the injectivity of i implies
{a,b}0 = {c,d}0, as needed.

Preserving the top element: e({1,1}0) = {1∧1,1∨1}i({1,1}) = {1}.
Preserving negation: We have

e(¬{a,b}0) = {¬a∧¬b,¬a∨¬b}i({¬a,¬b})
= {¬(a∨b),¬(a∧b)}i({a,b})∗

= ¬
�

a∧b,a∨b
	

i({a,b}) = ¬e({a,b}0).

Preserving meet: We first show that {a,b}0 ≤ {c,d}0 iff e({a,b}0)≤ e({c,d}0).
(⇒) If {a,b}0 ≤ {c,d}0 holds because of identity, the claim is trivial, so assume

this holds because a∨b ≤ c∧d. Then

(a∧b)∨ (a∨b) = a∨b ≤ c∧d = (c∧d)∧ (c∨d),

hence e({a,b}0)≤ e({c,d}0).
(⇐) If e({a,b}0)≤ e({c,d}0) holds because they are identical, injectivity implies

{a,b}0 = {c,d}0. So assume this holds due to the second clause. Then

a∨b = (a∧b)∨ (a∨b)≤ (c∧d)∧ (c∨d) = c∧d,
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hence {a,b}0 ≤ {c,d}0.
Now, we show e({a,b}0 ∧ {c,d}0) = e({a,b}0) ∧ e({c,d}0). If {a,b}0 and

{c,d}0 are comparable, this now is immediate, so assume they are not comparable,
hence also e({a,b}0) and e({c,d}0) are not comparable. Then

e({a,b}0 ∧{c,d}0) = e({a∧b∧ c∧d}0)

=
�

a∧b∧ c∧d
	

=
�
(a∧b)∧ (a∨b)∧ (c∧d)∧ (c∨d)

	
0

= e({a,b}0)∧ e({c,d}0),

as needed.

D.3 Embedding N≤
n,⋆ into N≤

n,id: removing the swaps In this subsection, we use the
shorthand {3a,b}3

k = {{{a,b}k}}.

Theorem D.3 Let A be an involutive lattice, let n= {0, . . . ,n−1}, and let ⋆ : n→ n
be an involution with i⋆ = j for i ̸= j. Let ⋆̄ : n → n be like ⋆ except that ⋆̄(i) = i and
⋆̄( j) = j (i.e., ⋆̄ removes the swap of i and j that ⋆ has). Then the following defines
an embedding

e : N≤
n,⋆(A)→

�
N≤

n,⋆̄
�3
(A)

{a,b}k 7→





ϕ(a,b) if k = i
ψ(a,b) if k = j
{3a,b}3

k otherwise

where ϕ,ψ : A×A →
�
N≤

n,⋆̄
�3
(A) are defined by

ϕ(a,b) =
n�

{a∧b}i
	

i ,
�
{a∧b,a∨b}i,{a∨b}i

	
i

o
i

ψ(a,b) =
n�

{a∧b} j,{a∧b,a∨b} j
	

j ,
�
{a∨b} j

	
j

o
j
.

Lemma D.4 In the setting of theorem D.3, we have

1. e is well-defined: in particular, ϕ(a,b),ψ(a,b) ∈
�
N≤

n,⋆̄
�3
(A).

2. {3a∧b}3
0 ≤ ϕ(a,b),ψ(a,b)≤ {3a∨b}3

0.
3. ¬ϕ(a,b) = ψ(¬a,¬b) and ¬ψ(a,b) = ϕ(¬a,¬b).
4. If ϕ(a,b) or ψ(a,b) are a singleton, then a = b.

Proof Ad (1). Recall that singletons of elements of A are always in N≤
n,⋆̄(A). We

have a∧b ≤ a∨b, so {a∧b,a∨b}i ∈
�
N≤

n,⋆̄
�1
(A). And {a∧b,a∨b}i ≤ {a∨b}i so�

{a∧b,a∨b}i,{a∨b}i
	

i is in
�
N≤

n,⋆̄
�2
(A). Finally,

�
{a∧b}i

	
i ≤

�
{a∧b,a∨b}i,{a∨b}i

	
i,

so ϕ(a,b) is in
�
N≤

n,⋆̄
�3
(A). Similarly for ψ . The function e is well-defined since ϕ

and ψ do not depend on the order of a and b, and all cases agree if a = b.
Ad (2). For ϕ the claim follows since

�
{a∧b}0

	
0 ≤

�
{a∧b}i

	
i =

�
{a∧b}i

	
i ∧

�
{a∧b,a∨b}i,{a∨b}i

	
i
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and
�
{a∧b}i

	
i ∨

�
{a∧b,a∨b}i,{a∨b}i

	
i

=
�
{a∧b,a∨b}i,{a∨b}i

	
i ≤

�
{a∨b}0

	
0.

Similarly for ψ .
Ad (3). We have

¬ϕ(a,b)

=¬
n�

{a∧b}i
	

i ,
�
{a∧b,a∨b}i,{a∨b}i

	
i

o
i

=
n�

{¬(a∧b)}i⋆
	

i⋆ ,
�
{¬(a∧b),¬(a∨b)}i⋆ ,{¬(a∨b)}i⋆

	
i⋆

o
i⋆

=
n�

{¬a∨¬b)} j
	

j ,
�
{¬a∨¬b,¬a∧¬b} j,{¬a∧¬b} j

	
j

o
j

=ψ(¬a,¬b).

Hence also ¬ψ(a,b) = ¬ψ(¬¬a,¬¬b) = ¬¬ϕ(¬a,¬b) = ϕ(¬a,¬b).
Ad (4). Assume ϕ(a,b) = {x}. Then

�
{a∧b}i

	
i = x =

�
{a∧b,a∨b}i,{a∨b}i

	
i,

so {a∧ b}i = {a∧ b,a∨ b}i, so a∧ b = a∨ b, which implies a = b. Similarly, if
ψ(a,b) is a singleton.

Lemma D.5 In the setting of theorem D.3, we have: {a,b}k ≤ {c,d}l iff
e({a,b}k)≤ e({c,d}l).

Proof (⇒) If {a,b}k ≤ {c,d}l holds due to identity, the claim is trivial, so assume
it is because a∨b≤ c∧d. Note that e({a,b}k) is one of ϕ(a,b), ψ(a,b) and {3a,b}3

k .
They are all ≤ {3a∨b}3

0 (lemma D.4). This, in turn, is ≤ {3c∧d}3
0. Which, in turn,

is ≤ all of ϕ(c,d), ψ(c,d) and {3c,d}3
k (lemma D.4). And e({c,d}l) is one of them.

(⇐) Case 1: e({a,b}k) = e({c,d}l). Show {a,b}k ≤ {c,d}l . If a = b, then
e({a,b}k) = {3a}3. We claim that then c = d; then e({a,b}k) = {3a}3 and
e({c,d}l) = {3c}3, so {a,b}k = {a}= {c}= {c,d}l , as needed. Indeed, if l ̸∈ {i, j},
then {3a}3 = e({c,d}l) = {3c,d}3

k implies c = a = d. If l = i, then ϕ(c,d) = {3a}3

is a singleton, so, by lemma D.4 (4), c = d. Similarly, if l = j. Analogously, the
claim follows if c = d.

So assume a ̸= b and c ̸= d. We consider the possible cases of k and l being
neither i nor j, or one of them.

If k, j ̸∈ {i, j}, then {{{a,b}k}} = e({a,b}k) = e({c,d}l) = {{{c,d}l}}, so
{a,b}k = {c,d}l follows.

If k = i and l ̸∈ {i, j}, then ϕ(a,b) = {{{c,d}l}} is a singleton, which implies, by
lemma D.4 (4), that a = b, which we excluded.

If k = i and l = i, then ϕ(a,b) = ϕ(c,d). So
n�

{a∧b}i
	

i ,
�
{a∧b,a∨b}i,{a∨b}i

	
i

o

=
n�

{c∧d}i
	

i ,
�
{c∧d,c∨d}i,{c∨d}i

	
i

o

Since a∧b ̸= a∨b (otherwise a = b) and c∧d ̸= c∨d (otherwise c = d),
�
{a∧b}i

	
i

cannot be identical to
�
{c∧d,c∨d}i,{c∨d}i

	
i, so

�
{a∧b}i

	
i =

�
{c∧d}i

	
i, hence
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a∧ b = c∧ d. Similarly,
�
{a∧ b,a∨ b}i,{a∨ b}i

	
i cannot be

�
{c∧ d}i

	
i, so it is�

{c∧d,c∨d}i,{c∨d}i
	

i, which implies {a∨b}i = {c∨d}i, so a∨b = c∨d. Since
a and b are comparable and c and d are comparable, this implies {a,b} = {c,d}.
Hence {a,b}k = {a,b}i = {c,d}i = {c,d}l .

If k = i and l = j, then ϕ(a,b) = ψ(c,d). So
n�

{a∧b}i
	

i ,
�
{a∧b,a∨b}i,{a∨b}i

	
i

o
i

=
n�

{c∧d} j,{c∧d,c∨d} j
	

j ,
�
{c∨d} j

	
j

o
j

Since a∧ b ̸= a∨ b (otherwise a = b) and c∧ d ̸= c∨ d (otherwise c = d), we must
have, similar to above,

�
{a∧b,a∨b}i,{a∨b}i

	
i =

�
{c∧d} j,{c∧d,c∨d} j

	
j,

so a∨b = c∧d. Hence {a,b}k ≤ {c,d}l , as needed.
The other cases are similar.
Case 2: e({a,b}k) ̸= e({c,d}l), i.e., e({a,b}k) < e({c,d}l). We consider the

possible cases of k and l being neither i nor j or one of them.
If k, l ̸∈ {i, j}, then {3a,b}3

k < {3c,d}3
l , so, by the properties of the natural em-

bedding, {a,b}k < {c,d}l , as needed.
If k = i and l ̸∈ {i, j}, then ϕ(a,b)< {3c,d}3

l , so
�
{a∧b}i

	
i ∨

�
{a∧b,a∨b}i,{a∨b}i

	
i ≤ {2c,d}2

l .

Hence
�
{a ∧ b,a ∨ b}i,{a ∨ b}i

	
i ≤ {2c,d}2

l . Either the two are identical and
{a,b}k ≤ {a∨b}i = {c,d}l as needed, or they are not identical and

{a,b}k ≤ {a∨b}i = {a∧b,a∨b}i ∨{a∨b}i ≤ {c,d}l .

If k = i and l = i, then ϕ(a,b)< ϕ(c,d). So
�
{a∧b,a∨b}i,{a∨b}i

	
i

=
�
{a∧b}i

	
i ∨

�
{a∧b,a∨b}i,{a∨b}i

	
i

≤
�
{c∧d}i

	
i ∧

�
{c∧d,c∨d}i,{c∨d}i

	
i

=
�
{c∧d}i

	
i.

If they are identical, {a,b}k ≤ {a ∨ b}i = {c ∧ d}i ≤ {c,d}l , and if they are not
identical,

{a,b}k ≤ {a∨b}i = {a∧b,a∨b}i ∨{a∨b}i ≤ {c∧d}i ≤ {c,d}l .

If k = i and l = j, then ϕ(a,b)< ψ(c,d). So
�
{a∧b,a∨b}i,{a∨b}i

	
i

=
�
{a∧b}i

	
i ∨

�
{a∧b,a∨b}i,{a∨b}i

	
i

≤
�
{c∧d} j,{c∧d,c∨d} j

	
j ∧

�
{c∨d} j

	
j

=
�
{c∧d} j,{c∧d,c∨d} j

	
j.

If they are identical, then either {a∨ b}i = {c∧ d} j and hence {a,b}k ≤ {c,d}l , or
{a∨ b}i = {c∧ d,c∨ d} j, so a∨ b = c∧ d, hence {a,b}k ≤ {c,d}l . If they are not
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identical,

{a,b}k ≤ {a∨b}i = {a∧b,a∨b}i ∨{a∨b}i

≤ {c∧d} j ∧{c∧d,c∨d} j = {c∧d} j ≤ {c,d}l .

The other cases are similar.

Proof of theorem D.3 Preserving the top-element: We have e({1,1}0) = {31,1}3
0,

which is the top element of
�
N≤

n,⋆̄
�3
(A).

Preserving negation: For {a,b}k, if k ̸∈ {i, j}, then also k⋆ ̸∈ {i, j} (since i⋆ = j),
and

e(¬{a,b}k) = e({¬a,¬b}k⋆) = {{{¬a,¬b}k⋆}}
= {{¬{a,b}k}}= ¬{3{a,b}3

k = ¬e({a,b}k).

If k = i, then, by lemma D.4 (3),

e(¬{a,b}i) = e({¬a,¬b} j) = ψ(¬a,¬b) = ¬ϕ(a,b) = ¬e({a,b}i).

Similarly if k = j.
Preserving meet: We need to show e({a,b}k ∧ {c,d}l) = e({a,b}k)∧ e({c,d}l).

If {a,b}k and {c,d}l are comparable, then, since e is an order-embedding by
lemma D.5, this is immediate; so assume they are incomparable, hence also
e({a,b}k) and e({c,d}l) are incomparable. Then, on the one hand

e({a,b}k ∧{c,d}l) = e({a∧b∧ c∧d}0) = {{{a∧b∧ c∧d}0}0}0.

To compute e({a,b}k)∧ e({c,d}l) and show that it equals {{{a∧ b∧ c∧ d}0}0}0,
we consider the different cases.

If k, l ̸∈ {i, j}, then, by the natural embedding,

e({a,b}k)∧ e({c,d}l) = {{{a,b}k}0}0 ∧{{{c,d}l}0}0

= {{{a,b}k ∧{c,d}l}0}0 = {{{a∧b∧ c∧d}0}0}0.

If k = i and l ̸∈ {i, j}, then

e({a,b}k)∧ e({c,d}l) = ϕ(a,b)∧{{{c,d}l}0}0

=
n�

{a∧b}i
	

i ∧
�
{a∧b,a∨b}i,{a∨b}i

	
i ∧

�
{c,d}l

	
l

o
0

=
n�

{a∧b}0
	

0 ∧
�
{c,d}l

	
0

o
0

=
n�

{a∧b}0 ∧{c,d}l
	

0

o
0

We cannot have {a∧b}0 ≥ {c,d}l : otherwise {c,d}l ≤ {a∧b}0 ≤ {a,b}k are com-
parable. If {a∧b}0 ≤ {c,d}l , then, since they are not identical, a∧b ≤ c∧d, so we
continue

=
n�

{a∧b}0
	

0

o
0
=
n�

{a∧b∧ c∧d}0
	

0

o
0
.

And if {a∧b}0 and {c,d}l are incomparable, then we continue

=
n�

{a∧b∧ c∧d}0
	

0

o
0
.
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If k = i and l = i, then

e({a,b}k)∧ e({c,d}l) = ϕ(a,b)∧ϕ(c,d)

=
n�

{a∧b}i
	

i ∧
�
{a∧b,a∨b}i,{a∨b}i

	
i

∧
�
{c∧d}i

	
i ∧

�
{c∧d,c∨d}i,{c∨d}i

	
i

o
0

=
n�

{a∧b}i
	

i ∧
�
{c∧d}i

	
i

o
0

=
n�

{a∧b∧ c∧d}0
	

0

o
0
.

If k = i and l = j, then

e({a,b}k)∧ e({c,d}l) = ϕ(a,b)∧ψ(c,d)

=
n�

{a∧b}i
	

i ∧
�
{a∧b,a∨b}i,{a∨b}i

	
i

∧
�
{c∧d} j,{c∧d,c∨d} j

	
j ∧

�
{c∨d} j

	
j

o
0

=
n�

{a∧b}i
	

i ∧
�
{c∧d} j,{c∧d,c∨d} j

	
j

o
0

We cannot have
�
{a∧ b}i

	
i ≥

�
{c∧ d} j,{c∧ d,c∨ d} j

	
j: otherwise, if they are

identical, {a ∧ b}i = {c ∧ d,c ∨ d} j, so a ∧ b = c ∨ d, so {a,b}k and {c,d}l are
comparable; and if they are not identical, {c∧ d} j ∨ {c∧ d,c∨ d} j ≤ {a∧ b}i, so
{c∧d,c∨d} j ≤ {a∧b}i, which again cannot be identical, hence

c∨d = (c∧d)∨ (c∨d)≤ a∧b,

which again implies that {a,b}k and {c,d}l are comparable.
If
�
{a∧b}i

	
i ≤

�
{c∧d} j,{c∧d,c∨d} j

	
j, then, since they are not identical,

{a∧b}i ≤ {c∧d} j ∧{c∧d,c∨d} j = {c∧d} j,

so a∧b ≤ c∧d and the earlier equation continues with

=
n�

{a∧b}i
	

i

o
0
=
n�

{a∧b∧ c∧d}0
	

0

o
0
.

If
�
{a∧b}i

	
i and

�
{c∧d} j,{c∧d,c∨d} j

	
j are incomparable, then the earlier

equation continues with

=
n�

{a∧b}i ∧{c∧d} j ∧{c∧d,c∨d} j
	

0

o
0

=
n�

{a∧b}i ∧{c∧d} j
	

0

o
0

=
n�

{a∧b∧ c∧d}0
	

0

o
0
.

If k ̸∈ {i, j} and l = j (unlike before, this case is importantly different and hence
done in detail),

e({a,b}k)∧ e({c,d}l) = {3a,b}3
k}k}k ∧ψ(c,d)

=
n�

{a,b}k
	

k ∧
�
{c∧d} j,{c∧d,c∨d} j

	
j ∧

�
{c∨d} j

	
j

o
0

=
n�

{a,b}k
	

k ∧
�
{c∧d} j,{c∧d,c∨d} j

	
j

o
0
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We cannot have
�
{a,b}k

	
k ≤

�
{c ∧ d} j,{c ∧ d,c ∨ d} j

	
j: otherwise, if they are

identical, {a,b}k = {c∧d} j ≤ {c,d}l are comparable, and if they are not identical,
{a,b}k ≤ {c∧d} j ∧{c∧d,c∨d} j = {c∧d} j ≤ {c,d}l are comparable.

We also cannot have
�
{a,b}k

	
k ≥

�
{c∧d} j,{c∧d,c∨d} j

	
j: Otherwise, since

they are not identical,

{c∧d,c∨d} j = {c∧d} j ∨{c∧d,c∨d} j ≤ {a,b}k.

However, we cannot have {c∧d,c∨d} j = {a,b}k: Otherwise, if a ̸= b, we get k = j,
and if a = b, then c∧d = a = c∨d, so c = d, so {a,b}k = {a}= {c,d}l are compa-
rable. Hence we must have c∨d = (c∧d)∨ (c∨d)≤ a∧b. So {a,b}k ≥ {c,d}l are
comparable.

So
�
{a,b}k

	
k and

�
{c ∧ d} j,{c ∧ d,c ∨ d} j

	
j must be incomparable, and the

equation continues:

=
n�

{a,b}k ∧{c∧d} j ∧{c∧d,c∨d} j
	

0

o
0

=
n�

{a,b}k ∧{c∧d} j
	

0

o
0
.

Now, {a,b}k ̸≤ {c∧d} j: Otherwise, if they are identical, {a,b}k = {c∧d} j ≤ {c,d}l
are comparable; and if they are not identical, then

{a,b}k ≤ {a∨b}0 ≤ {c∧d}0 ≤ {c,d}l

are comparable. If {a,b}k ≥ {c∧d} j, then, since they are not identical, c∧d ≤ a∧b,
so n�

{a,b}k ∧{c∧d} j
	

0

o
0
=
n�

{c∧d} j
	

0

o
0
=
n�

{a∧b∧ c∧d}0
	

0

o
0
.

And if {a,b}k and {c∧d} j are incomparable,
n�

{a,b}k ∧{c∧d} j
	

0

o
0
=
n�

{a∧b∧ c∧d}0
	

0

o
0
.

The other cases are similar.

D.4 Putting everything together We now can prove theorems 6.1 and 6.2. We derive
them as a consequence of a sequence of independently interesting corollaries. For
this, we use the following pattern of reasoning a lot:

Lemma D.6 Let F ∈ {Nn,⋆,N
≤
n,⋆} and G ∈ {Nn′,⋆′ ,N

≤
n′,⋆′}. Then the following are

equivalent for j ≥ 0:
1. For all (finite) involutive lattices A, F(A) ,→ G j(A).
2. For all i ≥ 1 and (finite) involutive lattices A, Fi(A) ,→ Gi j(A).

Proof The implication (2)⇒(1) follows by taking i = 1. For the other direction,
assume (1) and show, by induction on i ≥ 1, that, for any (finite) A, Fi(A) ,→ Gi j(A).
If i = 1, this is just the assumption. So assume that, for all k ≤ i and (finite) A,
Fk(A) ,→ Gk j(A), and show, for a given (finite) A, Fi+1(A) ,→ G(i+1) j(A). Since F is
a functor (proposition B.1), the assumption with k = i yields

F
�
Fi(A)

�
,→ F

�
Gi j(A)

�
,

so, applying the assumption with k = 1 to B :=Gi j(A) (which is finite if A was finite),

F
�
Gi j(A)

�
,→ G j�Gi j(A)

�
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hence Fi+1(A) ,→ G(i+1) j(A)
�
, as needed.

Corollary D.7 For n ≥ 1 and an involutive lattice A, we have Nn(A) ,→ N2n
(A)

and N≤
n (A) ,→ N2n

(A).

Proof We only prove the first claim; the second follows by adding ‘≤’ to the proof.
By induction on n. If n = 1, then Nn(A) = N(A) ,→ N21

(A) via the natural embed-
ding. So assume we have, for any involutive lattice B, Nn(B) ,→ N2n

(B). Let A
be an involutive lattice and show Nn+1(A) ,→ N2n+1

(A). From theorem D.1, we get
Nn+1(A) ,→ N2

n(A). From lemma D.6 with F = Nn, G = N, and j = 2n, we get that
the induction hypothesis implies N2

n(A) ,→ N22n
(A), as needed.

For an involution ⋆ : n → n with n = {0, . . . ,n−1}, call
�
(i, j) : 0 ≤ i < j ≤ n,⋆(i) = j

	

the set of swaps of ⋆.28 The cardinality of this set is the number of swaps of ⋆.

Corollary D.8 For n = {0, . . . ,n−1}, an involution ⋆ : n → n, and a finite involu-
tive lattice A, N≤

n,⋆(A) ,→ (N≤
n,id)

3k
(A), where k is the number of swaps of ⋆.

Proof We show by induction on k, if k is the number of swaps of an involution
⋆ : n → n and A is a finite involutive lattice, then N≤

n,⋆(A) ,→ (N≤
n,id)

3k
(A). If k = 0,

then ⋆ is the identity, so N≤
n,⋆(A) and (N≤

n,id)
3k
(A) are even identical. So assume the

claim holds for k and show it for k+1.
So let ⋆ : n → n be an involution with k + 1 many swaps, and let A be a finite

involutive lattice. We need to show N≤
n,⋆(A) ,→ (N≤

n,id)
3k+1

(A). Let (i, j) be a swap of
⋆. Let ⋆̄ : n → n be the involution that is like ⋆ except that ⋆̄(i) = i and ⋆̄( j) = j. By
theorem D.3, N≤

n,⋆(A) ,→ (N≤
n,⋆̄)

3(A). From lemma D.6 with F=N≤
n,⋆̄, G=N≤

n,id, and

j = 3k, we get that the induction hypothesis implies (N≤
n,⋆̄)

3(A) ,→ (N≤
n,id)

33k
(A), as

needed.

Proof of theorem 6.1 The first part—i.e., that for an involutive lattice A, we have
BN(A) ,→ N2(A)— is just theorem D.1 with n := 2. So assume A is finite, and show
N2(A) ,→ Nm(A) for some m.

By theorem D.2, there is n and an involution ⋆ : n → n with

N(A) = N1(A) ,→ N≤
n,⋆(A).

By corollary D.8, with k being the number of swaps of ⋆,

N≤
n,⋆(A) ,→ (N≤

n,id)
3k
(A).

By corollary D.7, we have, for any A, that N≤
n,id(A) ,→ (N≤

1,id)
2n
(A). So, using

lemma D.6,

(N≤
n,id)

3k
(A) ,→ (N≤

1,id)
3k2n

(A).

Hence, for any finite A, there is iA such that N(A) ,→ NiA(A).
So, for our given A, we have N(A) ,→ NiA(A) and, for B := NiA(A), we have

N(B) ,→ NiB(B). Since N is a functor (proposition B.1),

N
�
N(A)

�
,→ N

�
NiA(A)

�
,→ NiB

�
NiA(A)

�

hence N2(A) ,→ Nm(A)
�

with m = iB + iA, as needed.
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Proof of theorem 6.2 We need to show ⊨BN∞(2) = ⊨N∞(2) = ⊨N∞(2). By
lemma C.3, it is enough to show Var(BN∞(2)) = Var(N∞(2)) = Var(N∞(2)). We
have Var(BN∞(2)) = Var(BNn(2) : n ≥ 0), and similarly for N∞ and N∞.29 So it
suffices to show

Var(Nn(2) : n ≥ 0)⊆ Var(Nn(2) : n ≥ 0)

⊆ Var(BNn(2) : n ≥ 0)⊆ Var(Nn(2) : n ≥ 0).

The first inclusion holds since each Nn(2) is a subalgebra of Nn(2). Similarly for the
second inclusion: each Nn(2) is a subalgebra of BNn(2).

The point is that, with theorem 6.1, we can also show the third inclusion: By
induction on n, we show that BNn(2) can be embedded into some Nm(2). If
n = 0, choose m := 0, and if BNn(2) ,→ Nmn(2) for some mn, then, by theorem 6.1,
BN

�
BNn(2)

�
,→Nl�BNn(2)

�
for some l, and, since Nl is a functor (proposition B.1),

Nl�BNn(2)
�
,→ Nl�Nmn(2)

�
, hence BNn+1(2) ,→ Nmn+1(2) for mn+1 := l +mn.
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Notes

1. Shramko and Wansing [36, endnote 6] note that they were informed by J.M. Dunn that
this question was first asked by Manfred von Thun in 1975 at a lecture of Dunn. On
page 125, they also cite Dunn and Hardegree [10, 277] mentioning information states
that are both inconsistent and incomplete. The question is also brought up in an interview
with Prof. Nuel D. Belnap [28, 109].

2. If, e.g., the computer received inputs 0,0,1,0,1 concerning p, it would give it the truth-
value {0,0,1,0,1}= {0,1}.

3. If (1) is true, then what it says is the case, so it is either false or neither true nor false,
hence it is not true. If (1) is not true, then it is either false or neither true nor false (the
other two possible truth-values), so what it says is the case, hence it is true.

4. An indication for this is that, upon hearing this sentence, we arguably would not interpret
it literally, but maybe rather take it to pragmatically convey that there are two senses of
‘raining’.

5. Involutive lattices and related structures are well-known in universal algebra. Involutive
lattices were studied under the name i-lattices in 1958 by Kalman [21]. If the underly-
ing lattice is distributive, one speaks of DeMorgan lattices, which were independently
introduced by Moisil in 1935. (In fact, just as 2 generates the variety of Boolean alge-
bras, 4 generates the variety of DeMorgan lattices [21].) If one also adds the bounds 0
and 1, one speaks of DeMorgan algebras, which are also known as quasi-Boolean alge-
bras. (For references, see, e.g., [15, 3].) Thus, bounded involutive lattices are also called
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generalized DeMorgan algebras [41, 86]. There are many related notions of negation:
for an overview, see, e.g., [17, sec. 3] and [19]. For example, ortholattices are bounded
involutive lattices with x∧¬x = 0 and x∨¬x = 1.

6. We could equivalently replace the last two conditions by ‘x ≤ y implies ¬y ≤ ¬x’.

7. Not to be confused with a limit in category-theory.

8. Meaning 0 ̸= 1. The trivial involutive lattice has just one element and is a fixed point of
BN, albeit an uninteresting one (hence it is excluded here).

9. Here
V

ψ∈Γ0
v(ψ) is 1 if Γ0 is empty, and if Γ0 = {ψ1, . . . ,ψn} is nonempty, it is

v(ψ1)∧ . . .∧ v(ψn).

10. Proof: Consider BN2(2) from figure 5 and the elements a :=
�
{0,1}n,{0,1}b

	
b,

b :=
�
{0,1}b

	
, c :=

�
{0,1}b,{1}

	
n, and d :=

�
{0,1}b,{1}

	
b. Then conjunction

introduction fails since a,b ∈ D2 but a∧b =
�
{0}

	
̸∈ D2. And conjunction elimination

fails since c∧d =
�
{0,1}b

	
∈ D2 but c ̸∈ D2.

11. Proof sketch: First show, by induction on n, that x ∈ Dn iff enn+1(x) ∈ Dn+1. So x ∈ Dn
iff enm(x) ∈ Dm. Conclude x ∈ Dn iff en(x) ∈ D∞. Hence, if v is an BNn(2)-valuation
with v(ψ)∈ Dn for each ψ ∈ Γ, then w := en ◦v is an BN∞(2)-valuation with v(ψ)∈ D∞
for each ψ ∈ Γ, so w(ϕ) ∈ D∞, so v(ϕ) ∈ Dn.

12. If we use B and define the Dn analogously, then an easy induction argument shows that
Dn is all of Bn(2) except the least element. Then conjunction elimination works: if
v(ϕ ∧ψ) ∈ Dn, then, since v(ϕ ∧ψ) ≤ v(ϕ), also v(ϕ) ∈ Dn. But conjunction intro-
duction can still fail: Consider B2(2): here a := {{0},{1}}b and b := {{0,1}b} are
designated, but a∧b = {{0}} is not.

13. Proof: Assume Γ ⊨B ϕ and show Γ ⊨A ϕ . So there is a finite Γ0 ⊆ Γ such that, for all
B-valuations v,

V
ψ∈Γ0

v(ψ)≤ v(ϕ). In particular, if we have an A-valuation w, consider
the B-valuation v := f ◦w, so, since f is a homomorphism,

f
� ^

ψ∈Γ0

w(ψ)
�
=

^

ψ∈Γ0

v(ψ)≤ v(ϕ) = f
�
w(ϕ)

�
,

hence, since f is an embedding,
V

ψ∈Γ0
w(ψ)≤ w(ϕ).

14. Since 4 generates the variety of all distributive (bounded) involutive lattices, this claim
follows with lemma C.3. There is a subtlety: If ⊥ and ⊤ are in the language (as we
chose here), the interpreting algebraic structures should have 0 and 1. So for FDE, we
are looking at DeMorgan algebras. Otherwise, we work with DeMorgan lattices.

15. They are using a slightly different formulation [8, 431]: Γ ⊨∗ ϕ iff for all involutive
lattices A, for all A-valuations v, for all a ∈ A, if v(ψ)≥ a for all ψ ∈ Γ, then v(ϕ)≥ a.
If Γ is finite, this is equivalent to

V
ψ∈Γ v(ψ) ≤ v(ϕ). So, for finite Γ, Γ ⊨∗ ϕ iff, for all

involutive lattices A, Γ ⊨A ϕ . Extending the equivalence to all Γ then is a matter of the
compactness theorem.

16. Algebraically, the question is, using lemma C.3, whether the variety generated by
BN∞(2) is the variety of all involutive lattices.
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17. Also, for B the arguably more natural definition of logical consequence would be in
terms of designated values as discussed in section 5.2, while here we look at the algebraic
definition.

18. An anonymous referee helpfully remarks: Shouldn’t the truth-values of the revenge
sentences be fixed points under negation, just like for the original liar sentence?
We can arrange for this, e.g., as follows. As usual, the liar λ1 gets the value
a1 = {0,1}n = {0,¬0}n; and we continue this pattern by choosing for the revenge
sentence λk+1 the value ak+1 := {ak,¬ak}n. Then all ak’s are fixed points under
negation (in fact, ak+1 = {ak}) and ak+1 is different from all the (Nk(e)-embeddings
of) the truth-values in Nk(2). So the neither algebras allow for either, but should the
truth-values of the revenge sentences be fixed points under negation? Intuitively, the
defining property of the revenge sentence leaves this open: Just like for the usual liar,
the defining property of λk+1 arguably implies that its truth-value ak+1 ∈ Nk+1(2)
cannot be an Nk(e)-embedding of the previous truth-values Nk(2); otherwise, it is (the
embedding of) 1k iff it is (the embedding of something) in Nk(2) \ {1k}. So ak+1 is in
Nk+1(2)\Nk(e)(Nk(2)), and hence also ¬ak+1 is in there (if ¬ak+1 is in Nk(e)(Nk(2)),
then, since this is a subalgebra, also ¬¬ak+1 = ak+1 is in there). In the case of the liar
(k = 0), we have N1(2) \N0(e)(N0(2)) =

�
{0,1}

	
, which entails a1 = {0,1} = ¬a1.

But for the revenge liar (k > 0), the set Nk+1(2)\Nk(e)(Nk(2)) can have many elements,
so this argument cannot be used. Concretely, the elements of this set are the black dots in
figure 6. For k = 1, i.e., the first revenge sentence, these are the dots labeled a,b,c (in the
top right). Dot c was used in the main text as the truth-value for λ2 (its negation is dot
a, hence not a fixed point under negation), and dot b was used as the alternative choice
above (which is a fixed point under negation). But, as noted, should the truth-values of
the revenge sentences be fixed points under negation for some other reason, the neither
algebras can afford this.

19. It involves finding fixed points in two ‘dimensions’: on the one hand, the usual fixed
point of the ‘jump’ operation involved in building truth models, and, on the other hand,
a fixed point of the ‘neither’ operation. To do so, the theory of Leitgeb [26] will be very
helpful as it describes how to build truth models over De Morgan algebras (which are
our involutive lattices plus distributivity). A challenge is that both operations might have
to be iterated more than ω-many times to find a fixed point. For the ‘jump’ operation
this is typically the case to deal with the quantifiers that are usually assumed to be in
the language (e.g., for Kripke’s construction, one needs to go to the first non-recursive
ordinal). But also for the ‘neither’ operation this might be necessary for reasons similar
to those discussed by Field [12]: to avoid sentences that say of themselves that they have
some of the non-true values occurring in the neither-iteration.

20. See, e.g., [38, sec. 3.4] for a textbook discussion.

21. See, e.g., [14, 42, 40].

22. At least in the standard version; and even if it is not, there still are issues of higher-order
vagueness, as Fara [11] points out.

23. Proof: Recall from theorem 4.1 that N∞(2) with embeddings [·]k is the colimit to the
direct system built from the Nk(2) and embeddings Nk(e) (with N0(e) = e : 2 → N(2)).
Write εk : Nk(2)→ Nk+1(2) for the natural embedding, and set ψk := [·]k+1 ◦ εk. Then
(N∞(2),ψk) is a cocone to the direct system: since Nk+1(e)

�
{a}

�
= {Nk(e)(a)}, we
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have ψk(a) = [{a}]k+1 = [{Nk(e)(a)}]k+2 = ψk+1 ◦Nk(e)(a). So there is connecting
embedding N∞(2)→ N∞(2), which maps [a], with a ∈ Nk(2), to ψk(a) = [{a}]k+1; so
this precisely is ∆.

24. For this idea, see, e.g., [22, 27], [11, 199-200], or [20, 1562].

25. If ϕ has value [{0,1}n], this sentence gets value ∆∆([{0,1}n])∨∆¬∆([{0,1}n]), which
computes to [{{{0,1}n}}]∨ [{{¬{0,1}n}}], which is [{{{0,1}n}}]∨ [{{{0,1}n}}], or
simply [{{{0,1}n}}], which is not the top element 1∞.

26. This makes ∆ look like a provability predicate. This may be plausible if definiteness
is linked with assertability and if this, in turn, is linked with provability in a broadly
Dummettian way (summarized, e.g., in [32, sec. 6.5 and 6.9]).

27. The above intuition would explain the equivalence as follows. At a high-enough level of
iterating ‘neither’, we confidently give ϕ a truth-value, say a. So ∆ϕ gets value {a} at the
next level, since we need not resort to new borderline values. Negation is just a matter of
applying the corresponding operator, so ¬∆ϕ gets value ¬{a}. Similarly, ¬ϕ gets value
¬a and ∆¬ϕ gets value {¬a}. But, by how negation works on these truth-values, this is
the same as ¬{a}. Hence ¬∆ϕ and ∆¬ϕ always get the same value.

28. We require i < j to avoid counting ( j, i) as another swap: after all, we also have
j⋆ = i⋆⋆ = i.

29. Proof: (⊇) Each BNn(2) is in Var(BN∞(2)) qua subalgebra of BN∞(2). (⊆) Varieties
are closed under taking direct limits. (The direct limit satisfies an equation if all algebras
of the direct system satisfy it [16, p. 156, exc. 34].)
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