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Can neural networks be applied in voting theory, while satisfying the need for transparency in collective decisions? We
propose axiomatic deep voting: a framework to build and evaluate neural networks that aggregate preferences, using the well-
established axiomatic method of voting theory. Our findings are: (1) Neural networks, despite being highly accurate, often fail
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for both fields: For AI, important concepts like bias and value-alignment are studied in a mathematically rigorous way; for
voting theory, new areas of the space of voting rules are explored.
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1 Introduction
Artificial intelligence (AI) is increasingly applied in many domains, including not just scientific and technological
but also societal problems. This poses a dilemma when it comes to social choice, i.e., voting, preference aggregation,
and other processes of collective decisions. On the one hand, voting systems should be transparent, but the
neural networks on which modern AI is built are notoriously opaque. On the other hand, neural networks could
unearth novel and tailor-made collective decision procedures. Already, state-of-the-art techniques for alignment
of Large Language Models (LLMs) with human values—like RLHF1 or DPO [49]—rely on the aggregation of
human preferences about the generated outputs to fine-tune LLMs. This triggered recent research in guiding
such AI alignment using social choice [13].

In this paper, we study how neural networks aggregate votes and preferences. When they form such collective
decisions, do they adhere to the normative principles that social choice theory formulates as axioms? This is
fundamental both for a discussion of the dilemma and for using social choice for AI alignment. Moreover, it offers
new insights for both AI and voting theory. For AI, this provides a rich testing ground to study pressing machine
learning concepts like bias, value-alignment and interpretability in a mathematically rigorous way. For example, a
network is not biased towards specific individuals if it aggregates their preferences in accordance with the axiom
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1Bai et al., 2022. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. arXiv:2204.05862.
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Fig. 1. Can neural networks learn to vote with principles?

of anonymity; the so-called Pareto principle requires the neural network to align with any preference shared
among all individuals; and the well-known axiom of independence entails a certain compositional interpretability
of the network. For voting theory, axiomatic deep voting provides a new method for the central quest of exploring
the space of voting rules.

Social choice. How are individual preferences best turned into a collective decision? This question is studied by
social choice theory [9, 35], and specifically voting theory [55]. A voting rule is a function that takes as input a
profile—i.e., a list of each individual’s preferences among a set of alternatives—and produces as output a collective
decision, i.e., the alternative(s) that the rule takes to be most preferred for the group as a whole (see Section 3 for
the formal definitions). The most straightforward rule is Plurality (picking the top alternative of most individuals);
other classic rules include Borda and Copeland, while a recent suggestion is Stable Voting.

Axiomatic deep voting. To study the collective choices of neural networks, we develop the axiomatic deep
voting framework (sketched in Figure 1).2 Deep neural networks are (parametrized) functions that map vectors
(typically of a high dimension) to vectors (typically of a low dimension). So, after suitably encoding profiles and
collective decisions as vectors, neural networks realize voting rules, i.e., functions from profiles to collective
decisions. Discovering a voting rule can then be seen as an optimization problem: updating the neural network
parameters until a given desired property is fulfilled. We evaluate a trained neural network in terms of accuracy
and axiom satisfaction. While the former is standard in machine learning, the latter is specific to voting theory
and its axiomatic method [34, 51]. Different axioms describe different desirable properties of voting rules. An
example is the already mentioned anonymity axiom which requires that the names of the voters should not
influence the collective decision.
2The source code is available here: https://github.com/LevinHornischer/AxiomaticDeepVoting.
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Research questions. With this framework, we investigate the general question of how neural networks aggregate
preferences via three more specific questions.
(1) Correct for the right reasons? Neural networks can accurately learn standard voting rules, but do they adhere

to the normative principles expressed by voting axioms?
We observe eminent violations of the axioms, despite high accuracy in mimicking voting rules. So we focus on
teaching neural networks the expert knowledge expressed by axioms. There are two common ways to do this.
The first is via dataset augmentation [52]:

(2) Learning principles by example? Can neural networks be trained to adhere to voting axioms by training
with data exemplifying the axioms?

The second way is via semantic loss functions [53]. For this, we develop a translation of the axioms into loss
functions; so, by optimizing this loss during training, the network increases the corresponding axiom satisfaction.
Importantly, though, perfect axiom satisfaction is impossible according to the infamous theorem by Arrow [4].
So we search for the best possible axiom satisfaction:
(3) Rule synthesis guided by principles? When neural networks optimize axiom satisfaction, can they develop

new voting rules that surpass existing ones?
We compare the discovered rules to a wide range of known voting rules, to test if neural networks can advance
the current state of the art in voting theory.

Key findings. In three experiments, we answer these questions in turn. In each, we test three paradigmatic
neural network architectures: multi-layer perceptrons, convolutional neural networks, and word embedding
based classifiers. We also check a variety of standard distributions of voter preferences. Our three experiments
find, respectively:
(1) The employed architectures demonstrate similar behavior both regarding accuracy and axiom satisfaction.

Importantly, despite high accuracy, they markedly violate critical axioms like anonymity—yet, the news is
not as bad for other axioms.

(2) Data augmentation does not seem to boost the principled learning of neural networks. However, it drastically
decreases the amount of required training data.

(3) Neural networks that perform the unsupervised learning task of optimizing axiom satisfaction discover
voting rules that are substantially different from existing ones and are comparable—and often better—in
axiom satisfaction.

Thus, we fruitfully combine two approaches to studying the space of voting rules: Drawing on machine learning,
we use neural networks qua universal function approximators to explore that space; and drawing on voting theory,
we evaluate points in that space—i.e., voting rules—by their axiom satisfaction, thus guiding the exploration.

2 Related Work
We identify three main streams of relevant literature.

2.1 Axiomatic Evaluation of Voting Rules
Social choice theory has extensively quantified the axiom satisfaction of various voting rules, with a significant
focus on the concept ofmanipulability, i.e., the propensity of voters to be untruthful in order to sway the outcome
in their favor [18, 19, 43]. Numerous studies [20, 39, 45] examine how often voting rules elect the Condorcet
winner (i.e., the alternative representing a majoritarian consensus) for relatively small elections all having the
same probability of materializing (i.e., assuming the Impartial Culture distribution). In line with our findings, the
Borda rule is found to elect the Condorcet winner more often than the Plurality rule [45]. When considering
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the axiom of independence—the main trigger of Arrow’s impossibility theorem—the Borda rule fulfills it more
frequently than Copeland, which in turn satisfies it more than Plurality [16]. For the special case of 3 voters and
3 alternatives, an anonymous voting rule satisfies independence between 1.3% and 25.5% of the time [47].

Overall, our work aligns with the traditional concept of evaluating voting rules based on axioms. However, we
also consider learning voting rules and not just evaluating them.

2.2 Neural Networks and Voting
The synergy between voting and machine learning has recently garnered more and more attention. [31] use,
among others, multi-layer perceptrons (MLPs) on elections of 20 alternatives and 25 voters to predict the winners
of different voting rules. The study’s primary aim is to identify an effective computational technique on top
of the classical ones of the voting literature. The authors find that the Borda rule is predicted by the neural
networks with high accuracy (up to 99%), but more complex rules are predicted with lower accuracy (up to 85%
for Kemeny and 89% for Dodgson). Burka et al. [10] employ MLPs to investigate the relation between sample size
and accuracy when learning different voting rules, including Plurality, Borda, and Copeland. In that work, up to
3000 data points are used based on the Impartial Culture assumption, with at most 5 alternatives and 11 voters.
The MLP is found to mimic more closely Borda, no matter on which rule it is trained: e.g., for 3 alternatives
and 7 voters, trained on Plurality, the MLP mimics Borda with 95% accuracy and Plurality with 86% accuracy.
However, the size of the training data exhibits an impact on the results: e.g., when trained on elections with a
Condorcet winner, the MLP mimics more closely Borda in sample-size up to 1000, and Copeland in larger samples.
Increasing the size of the MLP by adding layers does not seem important. [2] study more complex neural network
architectures (such as Set Transformers and DeepSets), improving the accuracy of MLPs by up to 4% in learning
Plurality and Copeland. With sufficiently many data points, those networks are shown to match almost perfectly
each voting rule, and to generalize to elections with unseen numbers of voters.
Similarly to all these works, our first experiment considers precisely the problem of using neural networks

to learn existing rules from voting theory. However, we systematically study this with axioms: instead of only
targeting the right outcomes, we test whether they are obtained via the right principles. In an initial exploration
towards the same direction, Armstrong and Larson [3] use a single axiom—prescribing the election of a Condorcet
winner when one exists—to train normatively appealing neural networks. This work relies on real data from
Canadian federal elections, while ours builds on extensive synthetic data. Additionally, our third experiment
illustrates original interactions between sets of different axioms that have not been explored in the literature yet.
After observing a theoretical trade-off between fairness (in particular anonymity variations, demanding that

different types of voters be treated equally) and certain notions of economic efficiency (some related to the
Condorcet winner), Mohsin et al. [41] train two machine learning models on synthetic data and discover new
voting rules that compete well against both Plurality and Borda. Although rule synthesis and axiomatic analysis
is not a main focus of that work, the obtained results enforce the idea that machine learning methods can beat
existing ones from economic theory when optimized for principled learning. In the slightly different framework
of probabilistic voting, MLPs are used to learn voting rules that output distributions over the set of alternatives
(rather than the certain winning alternatives), for elections of up to 7 alternatives and 29 voters.3 It is shown that
the discovered rules can lead to novel ones with improved axiomatic properties, after the appropriate embedding
of the input and some adjustments of the output. Another work studies the setting of participatory budgeting
(PB), where citizens vote about the projects that they would like to implement in their neighbourhoods, while
taking into account their respective costs.4 Set Transformer neural networks trained on PB instances with both
real and synthetic data are found to both learn existing voting rules and to discover new ones that satisfy societal

3Matone et al., 2024. DeepVoting: Learning Voting Rules with Tailored Embeddings. arXiv:2408.13630.
4Fairstein, Vilenchik, and Gal, 2024. Learning Aggregation Rules in Participatory Budgeting: A Data-Driven Approach. arXiv:2412.01864.
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objectives (such as fair representation). Overall, our paper adds to this literature by offering a concrete framework
to study combinations of basic axioms from the ML perspective, in the most standard voting setting.

Other promising lines of research target learning an abstract voting rule given examples about its choices [48]
and designing a voting rule that maximizes some notion of social welfare [2]. Holliday et al. [27] explore the
strategic manipulation of voting rules by MLPs of different sizes, generating elections of up to 6 alternatives
and 21 voters. They find that sufficiently large MLPs learn to profitably manipulate all examined voting rules
only with information about the pairwise majority victories between alternatives. But some rules like Split Cycle
seem more resistant than other rules (e.g., Plurality and Borda). Moreover, a systematic study of the connections
between social choice and RLHF is conducted by Dai and Fleisig [15], including fundamental axiomatic notions
such as the Condorcet winner.

A different approach, rather orthogonal to ours, is to consider AI models as the individuals who vote, instead
of using them as the aggregation mechanisms. In this vein, Yang et al. [54] consider a human voting experiment
with 180 participants to establish a baseline for human preferences and conducted a corresponding experiment
with LLM (e.g., GPT-4) agents. The voting behavior of the networks seems to be affected by the presentation
order of the alternatives, as well as the numerical ID assigned to each LLM representing a voter. Some voting
rules such as Borda show that LLMs may lead to less diverse collective outcomes. Importantly GPT-4 seems to
over-rely on stereotypical demographics of the voters it is supposed to mimic. Similarly, using data from Brazil’s
2022 presidential election, Gudiño Rosero et al. [23] tests the accuracy with which LLMs predict an individual’s
vote. They find that LLMs are more accurate than a naive rule guessing that individuals simply vote for the
proposals of the candidate most aligned with their political orientation.

2.3 Social Choice for AI Alignment
A growing research area studies how social choice theory can be used to guide the alignment of modern AI
methods with human values and moral judgments. Conitzer et al. [13] highlight a series of technical connections—
for example, the alternatives in a voting context could be treated as all possible parameterizations of a network, or
as all its possible answers. As an indication, in a popular work about a controversial topic, Noothigattu et al. [44]
use data from the online ‘moral machine experiment’ to build a model of aggregated moral preferences aimed at
guiding the decision making of autonomous vehicles. On a more theoretical level, Arrow’s theorem can be utilized
to prove that there does not exist any AI system that can treat all its users and human supervisors equally.5 Based
on an investment game where participants are asked to manage wealth, Koster et al. [30] find that by optimizing
for human preferences, a reinforcement learning model can propose a wealth redistribution mechanism that is
supported by the majority of participants. We do not directly engage with the ethical dimension of this research
area; still, we participate in the related foundational discussion by studying whether neural networks can learn
to vote with principles.

3 Preliminaries on Voting Theory
We work in the standard setting of voting theory, where a finite set 𝑁 of voters have preferences that are linear
orders (also called rankings) over a finite set 𝐴 of alternatives [55]. Set𝑚 := |𝐴| and 𝑛 := |𝑁 |. We denote by
𝑷 = (𝑃1, ..., 𝑃𝑛) a preference profile, i.e., a vector with the preference 𝑃𝑖 for every voter 𝑖 ∈ 𝑁 . This is illustrated in
Figure 2.
For a permutation of the alternatives 𝜎 : 𝐴 → 𝐴, the ranking 𝜎 (𝑃) is obtained by applying 𝜎 elementwise

to the ranking 𝑃 , and 𝜎 (𝑷 ) = (𝜎 (𝑃1), . . . , 𝜎 (𝑃𝑛)). For a permutation of the voters 𝜋 : 𝑁 → 𝑁 , we define

5Mishra, 2023. AI Alignment and Social Choice: Fundamental Limitations and Policy Implications. arXiv:2310.16048.
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Fig. 2. A voting profile, with voters 𝑁 = {1, . . . , 6} and alternatives 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}. Each column depicts the preference of the
individual voter; e.g., voter 1 prefers alternative 𝑐 most, followed by alternative 𝑎, etc.

𝜋 (𝑷 ) = (𝑃𝜋 (1) , ..., 𝑃𝜋 (𝑛) ). A voting rule is a function 𝐹 that determines the winning alternatives for each such
profile. Formally, 𝐹 : 𝑷 ↦→ 𝑆 , where ∅ ≠ 𝑆 ⊆ 𝐴.6

3.1 Voting Rules
Voting rules usually fit into one of two categories: scoring rules and tournament solutions. Scoring rules assign a
score to each alternative depending on its position in the linear preference of each voter and declare as winners
those alternatives with the highest score across all voters. The two primary scoring rules are Plurality (assigning
score 1 to an alternative each time it is ranked first by a voter, and score 0 otherwise) and Borda (assigning
score𝑚 − 1 to an alternative ranked first by a voter, score𝑚 − 2 to an alternative ranked second, and so on, until
score 0 is assigned to an alternative ranked last by a voter).7 Another, less popular scoring rule, is Anti-Plurality,
which assigns score 0 to an alternative each time it is ranked last by a voter, and score 1 otherwise.

Tournament solutions on the other hand are based on tournaments that capture pairwise comparisons between
the alternatives, induced by the voters’ preferences. For 𝑥,𝑦 ∈ 𝐴, let 𝑁 𝑷

𝑥≻𝑦 be the set of voters 𝑖 in the profile 𝑷
that consider 𝑥 better than 𝑦 in 𝑃𝑖 , and 𝑛𝑷𝑥≻𝑦 := |𝑁 𝑷

𝑥≻𝑦 |. A classical tournament solution is the Copeland rule,
which selects as winners the alternatives that beat the most other alternatives in a pairwise majority contest:
argmax𝑥∈𝐴 |{𝑦 ∈ 𝐴 : 𝑛𝑷𝑥≻𝑦 ≥ 𝑛𝑷𝑦≻𝑥 }|. In other words, an alternative can be thought to be assigned a Copeland
score of 1 for every other alternative to which it is majority preferred, with the winner being the alternative with
the highest score overall. Analogously, the Llull rule assigns to an alternative a score 1 for every other alternative
to which it is majority preferred, and score 1/2 for every other alternative to which it is majority tied—if there
are no majority ties, then the Llull winners coincide with the Copeland winners. The Top Cycle rule selects the
smallest set of alternatives such that each alternative in the set is majority preferred to each alternative outside
the set. In a sense, this set captures the notion of a Condorcet winner when a single such alternative does not
exist. For the Banks rule, we say that a chain (𝑥,𝑦, 𝑧, . . .) in a tournament is a subset of alternatives that are
linearly connected by the majority relation (i.e., 𝑥 is majority preferred to 𝑦, 𝑦 is majority preferred to 𝑧, and so
on). Then 𝑥 is a Banks winner if it is the maximum element of a maximal chain. To define the recently proposed
Stable Voting rule [26], we first need to describe—the more computationally expensive, and thus left aside in
our analysis—Split Cycle [25]. The weighted tournament of a profile is a weighted directed graph the nodes of
which are alternatives with an edge from 𝑥 to 𝑦 of weight 𝑛𝑷𝑥≻𝑦 . Suppose that in each cycle of the graph, we
simultaneously delete the edges with minimal weight. Then the alternatives with no incoming edges are the
winners of Split Cycle. If there is only one Split Cycle winner in a profile 𝑷 , then this also is the winner of Stable
Voting; otherwise 𝑥 is a winner of Stable Voting if for some alternative 𝑦 it holds that 𝑥 is a Split Cycle winner
with the maximal margin 𝑛𝑷𝑥≻𝑦 such that 𝑥 is a Stable Voting winner in the profile 𝑷−𝑦 obtained from 𝑷 after
deleting alternative 𝑦.

6We use the Python package pref-voting in all our experiments [28].
7Plurality and Borda are often contrasted in voting [24, 50].
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Other prominent rules that do not fit into the two above categories are Blacks, Baldwin, andWeak Nanson. Black
returns the Condorcet winner (i.e., the alternative beating every other alternative in a pairwise strict majority
contest) if one exists, otherwise it returns the Borda winners. Weak Nanson (resp., Baldwin) is defined iteratively
on voting profiles of various sizes. In each round, all alternatives with below-average (resp., the lowest) Borda
score are removed. Whenever all alternatives have the same Borda score, they all win; otherwise the alternative
that remains in the last round wins. More voting rules can be defined in iterative terms, based on the idea that
less popular alternatives in one round be dropped from all preferences in the next round, until some surviving
alternative achieves majority support: Plurality with Runoff consists of at most two rounds—if no alternative
is ranked on top by a majority of voters in the first round, then the second round selects the majority winner
between the two alternatives that achieved the highest Plurality score in the first round; Instant Runoff (resp.,
Coombs) is such that in each round the alternatives with the lowest Plurality score (resp., Anti-Plurality score)
are eliminated.
A rule different in spirit, the Uncovered Set, relies on the idea of undefeated alternatives. Let us say that

alternative 𝑥 left-covers 𝑦 if all alternatives 𝑧 that are majority preferred to 𝑥 are also majority preferred to 𝑦.
Then, 𝑥 defeats 𝑦 if 𝑥 is majority preferred to 𝑦 and also left-covers 𝑦. The winners of Uncovered Set are the
undefeated alternatives. Finally, the Kemeny-Young rule is based on a notion of distance between the preferences of
the voters: it constructs the linear order that minimises the sum of Kendal Tau distances for all voters’ preferences
and elects as winner the alternative on the top of that linear order.
Note that all the aforementioned rules are included in our last experiment, which aims at comparing a wide

pool of different voting rules that vary in nature. Our other two experiments are focused on the three most
standard voting rules, Plurality, Borda, and Copeland, which are the most frequently studied in the literature to
date at the intersection of voting and machine learning. For more detailed discussions of the rules, we refer to the
introductory chapter of [55] and to the pref-voting documentation.

3.2 Axioms
We define axioms as functions that map a voting rule and a preference profile to a value in {−1, 1, 0}, where
0 means that the axiom is not applicable, −1 means that the axiom is violated, and 1 that it is satisfied. The
satisfaction degree of a rule with respect to a given axiom is the ratio of the number of sampled profiles in which
the axiom is satisfied to the number of sampled profiles in which it is applicable. We focus on axioms that capture
basic and diverse normative properties of a voting rule 𝐹 .

• Anonymity is always applicable; it is satisfied in 𝑷 if for all permutations of voters 𝜋 : 𝑁 → 𝑁 , 𝐹 (𝜋 (𝑷 )) =
𝐹 (𝑷 ). In words, the winners should be invariant under permutations of the voters.

• Neutrality is always applicable; it is satisfied in 𝑷 if for all permutations of alternatives 𝜎 : 𝐴 → 𝐴,
𝐹 (𝜎 (𝑷 )) = 𝜎 (𝐹 (𝑷 )). In words, under permutations of the alternatives, the winners should be permuted
respectively.

• Condorcet principle is applicable in 𝑷 if some 𝑥 ∈ 𝐴 is such that 𝑛𝑷𝑥≻𝑦 > 𝑛/2 for all 𝑦 ∈ 𝐴 \ {𝑥}; it is satisfied
if 𝐹 (𝑷 ) = {𝑥}. In words, if a Condorcet winner exists, then it should be the unique winner of the voting
rule.

• Pareto principle is applicable in 𝑷 if there exist two alternatives 𝑥,𝑦 ∈ 𝐴 such that 𝑛𝑷𝑥≻𝑦 = 𝑛; it is satisfied if
𝑦 ∉ 𝐹 (𝑷 ). In words, if an alternative is considered inferior to a certain other alternative by all voters, then
it should not win.

• Independence is applicable in 𝑷 if 𝐹 (𝑷 ) ≠ 𝐴; it is satisfied if for all 𝑥 ∈ 𝐹 (𝑷 ), 𝑦 ∉ 𝐹 (𝑷 ), and 𝑷 ′ such that
𝑁 𝑷
𝑥≻𝑦 = 𝑁 𝑷 ′

𝑥≻𝑦 , it holds that 𝑦 ∉ 𝐹 (𝑷 ′). In words, if the relative ranking between a winning alternative and
a losing alternative remains the same for all voters, then the losing alternative should not win.
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All voting rules defined above satisfy anonymity and neutrality, as well as the Pareto principle, for all preference
profiles. They all violate independence for some preference profile. Several of them such as Copeland, Llull,
Blacks, Banks, Stable voting, and Weak Nanson always satisfy the Condorcet principle.

3.3 Distributions of Preference Profiles
Specifying the distribution of preference data is essential to studying the voting behavior of a society. Indeed,
there is increasing interest within the computational social choice community towards a line of work called ‘map
of elections’ that attempts to systematize simulation experiments relying on synthetic voting data [6, 7]. In this
vein, we aim to ensure that our results are independent of the specific choice of the distribution. We thus employ
four representative distributions that aim to cover elections of different nature, as explained below. In Section 5.1
we specify the choice of parameters of these distributions for our experiments, which allows them to capture a
wide range of realistic scenarios. It is also important to note that all our experimental results are found to be
robust across distributions; thus we do not expect that by examining additional distributions we would discover
significantly different insights.
Impartial Culture (IC) assumes that all preference profiles have the same probability of appearing. Each

preference of a voter in a profile is sampled uniformly at random. The Mallows distribution [38] fixes a reference
ranking 𝑃 and assumes that each voter’s preference is close to that ranking. Closeness to the reference ranking is
defined using the Kendall Tau distance, parameterized by a dispersion parameter 𝜙 ∈ (0, 1].8 This distribution
reduces to IC when 𝜙 = 1 and concentrates all mass on 𝑃 as 𝜙 tends to 0.
The IC and Mallows distributions are complementary: IC is simplistic and widely employed in theoretical

works on voting rules as discussed earlier in the literature review; it captures an extreme case with no correlation
between preferences of voters. Mallows is often employed in numerical studies of voting rules that use artificial
data but wish to capture more realistic voting scenarios [12, 33].
The next two distributions also capture more intricate relationships between the preferences in a profile.

According to the 2D-Euclidean distribution, voters and alternatives are distributed randomly in 2-dimensional
Euclidean space, and the closer an alternative is to a voter the more the voter prefers that alternative. Finally, the
Urn distribution [17] generates a profile given a parameter 𝛼 ∈ [0,∞). Voters randomly draw their ranking from
an urn. Initially, the urn includes all possible rankings over the alternatives. After a voter randomly draws from
the urn, we add to the urn 𝛼𝑛! copies of that ranking. When 𝛼 = 0, this reduces to IC.

4 Method
To answer our research questions, we develop the axiomatic deep voting framework, visualized in Figure 3. It
is built around a neural network, which is a function 𝑓𝑤 : R𝑖 → R𝑗 parametrized by weights 𝑤 ∈ R𝑘 . We will
instantiate this with three different neural network architectures (see Section 4.1). Every profile 𝑷 is mapped, via
an encoding function 𝑒 (see Section 4.2), to a vector 𝑥 = 𝑒 (𝑷 ) ∈ R𝑖 , for which the neural network produces an
output 𝑦 ∈ R𝑗 .9 The decoding function 𝑑 (see Section 4.3) turns this output into a winning set 𝑆 = 𝑑 (𝑦). Thus, this
setup realizes the voting rule:

𝐹𝑤
(
𝑷
)
:= 𝑑

(
𝑓𝑤

(
𝑒 (𝑷 )

) )
.

8 The Kendall Tau distance between two rankings 𝑃 and𝑄 over the same set of alternatives is the number of pairs of alternatives (𝑎,𝑏 ) such
that 𝑎 is preferred over 𝑏 in 𝑃 but not so in𝑄 .
9For our third architecture, the encoding function is part of the neural network, while for the first two it is independent (see Section 4.2);
hence we treat 𝑒 as a separate entity here.
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Fig. 3. The axiomatic deep voting architecture.

The network is trained, as usual, using backpropagation with respect to a loss function (in Section 4.4), which
relies on training data. Finally, we evaluate (in Section 4.5) the trained network not only with respect to its
accuracy (how well it fits the test dataset), but, crucially, also by how much it satisfies the various voting axioms.

4.1 Architectures
We use three paradigmatic neural network architectures from modern machine learning.

First, multi-layer perceptrons (MLPs)—also known as feed-forward neural network—are the classic deep neural
net [see, e.g., 21, ch. 6]. They consist of an input layer of neurons, one or more hidden layers, and an output layer.

Second, convolutional neural networks (CNNs) are a standard architecture to process grid-like input data such
as images [see, e.g., 21, ch. 9], and in our case profiles. Compared to MLPs, they additionally use so-called
convolutional layers to capture local, invariant patterns in the input.

Third, we devise an architecture that satisfies the anonymity axiom by design: We view profiles as sentences
whose words are the rankings. We use the word embedding algorithmWord2vec [40] to map each ranking to a
high-dimensional embedding vector. These vectors are averaged—hence we get anonymity—and an MLP then
classifies this average into a winning set. This combined architecture we call here word embedding classifiers
(WECs).

4.2 Encoding
To ensure our neural networks learn general patterns, we do not work with a fixed number of voters and
alternatives, but only with a maximal number of voters 𝑛max and a maximal number of alternatives𝑚max. So
the model should allow as input any profile 𝑷 over the set of voters 𝑁 = {0, . . . , 𝑛 − 1} with 𝑛 ≤ 𝑛max and set of
alternatives𝑀 = {0, . . . ,𝑚 − 1} with𝑚 ≤ 𝑚max. (For readability, we also write 𝑎, 𝑏, 𝑐, . . . for the alternatives.) We
write 𝑎𝑠𝑟 for the 𝑟 -th most preferred alternative of voter 𝑠 , so the profile 𝑷 is represented as the matrix (𝑎𝑠𝑟 )𝑟,𝑠 ,
whose columns are the rankings as in Figure 2. We write �̃� = (𝑎𝑠𝑟 )𝑟,𝑠 for the result of padding the𝑚 × 𝑛 matrix 𝑷
with the symbol ∼ to the maximal input dimensions𝑚max ×𝑛max. (So 𝑎𝑠𝑟 is 𝑎𝑠𝑟 if 𝑟 ≤ 𝑚 and 𝑠 ≤ 𝑛, and otherwise it
is ∼.)

How should we encode �̃� so it can be inputted to a neural network? The most straightforward way is to read
each alternative 𝑎𝑠𝑟 ∈ 𝑀 as the number that it is and the padding symbol ∼ as, say, −1. Then the matrix �̃� is
regarded as a vector of dimension𝑚max𝑛max. However, this does not perform well, so, following Anil and Bao [2],
we represent an alternative not as a number but as a one-hot vector. For 𝑎 ∈ {0, . . . ,𝑚max − 1}, let 𝑎 be the vector
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of length𝑚max that is 1 at position 𝑎 and 0 everywhere else. For the padding symbol, let ∼ be the vector of length
𝑚max that is 0 everywhere. We write 𝑷 = (𝑎𝑠𝑟 )𝑟,𝑠 .

The encoding function for MLPs, 𝑒MLP, maps profile 𝑷 to the vector 𝑥 obtained by casting the matrix 𝑷 column
by column into a flattened vector (of dimension𝑚2

max𝑛max). This vector 𝑥 can then be inputted into the MLP.
The encoding function for CNNs regards the matrix 𝑷 as a pixel image: the ‘pixel’ at position (𝑟, 𝑠) has the ‘color

value’ 𝑎𝑠𝑟 . Thus, 𝑒CNN maps profile 𝑷 to the matrix 𝑷 recast as a tensor with dimensions (channel, height,width) =
(𝑚max,𝑚max, 𝑛max). This tensor can then be inputted into the CNN.
The encoding function for WECs regards the profile 𝑷 = (𝑃1, . . . , 𝑃𝑛) as a sentence with words 𝑃𝑖 . We train it to

embed these words into vectors of a fixed high dimension. Thus, unlike the previous encoding functions, this
one is not separate from the neural network but rather forms the first layer of the WEC, with the remaining
layers processing the embedding vectors. More precisely, we first pre-train the embeddings as follows. For a
given corpus size 𝑐 , we sample 𝑐-many profiles from a given distribution of profiles (e.g., IC) to form our corpus
(i.e., a set of sentences). The rankings occurring in the profiles form the vocabulary of this corpus, to which we
add the unk token (to later represent unknown rankings, i.e., rankings that are not in the vocabulary) and the
pad token (to pad a profile to length 𝑛max). Due to the unk token, this encoding applies to all profiles, even if
it contains rankings that are not part of the model’s vocabulary. Using Word2vec, we train embeddings which
represent words in the vocabulary as vectors. When instantiating the WEC architecture, these embeddings form
the first layer: it maps the profile (𝑃1, . . . , 𝑃𝑛) to the corresponding embedding vectors (𝑣1, . . . , 𝑣𝑛). The next layer
averages these vectors into a single vector 𝑣 , followed by several linear layers ending with the output layer.

4.3 Decoding
Given a profile 𝑷 as input, all neural network architectures produce as output the logits 𝑦 = (𝑦0, . . . , 𝑦𝑚max ) in
R𝑚max . We apply the sigmoid function sig elementwise to obtain the probability that alternative 𝑟 is in the winning
set.10 With𝑚 the number of alternatives in profile 𝑷 , we define the decoding function

𝑑𝑚 (𝑦) :=
{
𝑟 ∈ {0, . . . ,𝑚} : sig(𝑦𝑟 ) > 0.5

}
.11

In experiment 3, we will consider further versions of this decoding function (see Section 6.3).

4.4 Loss Functions
Since multiple alternatives can win, we cast the task of finding a voting rule as amulti-label classification problem.
Each input profile 𝑷 is associated with𝑚 binary labels (where𝑚 is the number of alternatives in 𝑷 ), and the 𝑟 -th
label is 1 if and only if the 𝑟 -th alternative is in the winning set associated with 𝑷 . Hence we use binary cross
entropy as loss function.

Amain contribution of this paper is that, for each axiom, we also design a loss function that enforces satisfaction
of that axiom. So, for each axiom ax, we define a function 𝐿ax (𝑓𝑤, 𝑷 ) that takes as input the function 𝑓𝑤 computed by
the neural network with weights𝑤 and a profile 𝑷 . It outputs a non-negative real number describing numerically
how much the axiom is satisfied: 0 means perfect axiom satisfaction, while higher numbers mean worse axiom
satisfaction. We now define these loss functions, which we will use later.

10We use ‘sig’ instead of ‘𝜎 ’ to denote the sigmoid function, in order to not confuse it with the previous use of ‘𝜎 ’ for permutations of
alternatives.
11A priori, it can happen that the neural network does not assign any winner, in contrast to our definition of a voting rule. We check (and
train) that this happens, if at all, only with a negligible probability.
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Anonymity. Given the network 𝑓𝑤 and profile 𝑷 , uniformly sample 𝑁 -many permutations 𝜋1, . . . , 𝜋𝑁 of the set
of voters of 𝑷 and define

𝐿𝐴 (𝑓𝑤, 𝑷 ) :=
1
𝑁

𝑁∑︁
𝑟=1

KL
(
𝑓𝑤

(
𝑒 (𝑷 )

)
, 𝑓𝑤

(
𝑒 (𝜋𝑟 (𝑷 ))

) )
,

where KL is Kullback–Leibler divergence.12
Condorcet. If 𝑷 has no Condorcet winner, 𝐿𝐶 (𝑓𝑤, 𝑷 ) := 0, and otherwise, if that Condorcet winner is alternative

𝑎, define (recall 𝑎 is the one-hot vector for alternative 𝑎)

𝐿𝐶 (𝑓𝑤, 𝑷 ) := KL
(
𝑓𝑤 (𝑒 (𝑷 )), 𝑎

)
.

Pareto. We define (recall that 𝑛𝑷
𝑎≻𝑏 = 𝑛 means that all voters in 𝑷 rank 𝑎 above 𝑏)

𝐿𝑃 (𝑓𝑤, 𝑷 ) :=
∑︁

𝑎,𝑏 with 𝑛𝑷
𝑎≻𝑏=𝑛

sig
(
𝑓𝑤 (𝑒 (𝑷 ))𝑏

)
.

Independence. Define 𝐿𝐼 (𝑓𝑤, 𝑷 ) := 0 if 𝑷 does not have at least two alternatives. Otherwise, randomly sample
𝑁 -many pairs (𝑎𝑟 , 𝑏𝑟 ) of distinct alternatives in 𝑷 and randomly sample, for each ranking 𝑃𝑘 of 𝑷 = (𝑃1, . . . , 𝑃𝑛),
a shuffling 𝑃 ′

𝑘
of 𝑃𝑘 in which, however, the order of 𝑎𝑟 and 𝑏𝑟 is the same as in 𝑃𝑘 , and set 𝑷𝑟 := (𝑃 ′

1, . . . , 𝑃
′
𝑛).

Write 𝑦 := 𝑓𝑤 (𝑒 (𝑷 )) and 𝑦𝑟 := 𝑓𝑤 (𝑒 (𝑷𝑟 )), and define

𝐿𝐼 (𝑓𝑤, 𝑷 ) :=
𝑁∑︁
𝑟=1

KL
( (
𝑦𝑎𝑟𝑦𝑏𝑟

)
,
(
𝑦𝑟𝑎𝑟𝑦

𝑟
𝑏𝑟

) )
.

No winner. Recall that voting rules are required to output at least one winner. This is usually not called an
axiom, and we did not hard-code this into our architectures. So we also want to optimize our neural networks to
align with this requirement. Hence we define the ‘no winner’ loss as follows. Writing 𝑦 = 𝑓𝑤 (𝑒 (𝑷 )), we want
that at least one of the numbers in 𝑝 :=

(
sig(𝑦1), . . . , 𝜎 (𝑦𝑚)

)
is above 0.5, i.e., the maximum norm ∥𝑝 ∥∞ should

be above 0.5. Hence the more it is below that, the worse the loss:

𝐿𝑁𝑊 (𝑓𝑤, 𝑷 ) := max
(
0.5 − ∥𝑝 ∥∞, 0

)
.13

4.5 Evaluation Metrics
We have two ways of evaluating the model: accuracy and axioms. First, we calculate the accuracy of the trained
neural network on a given test set in two ways: Identity (or hard) accuracy is the percentage of pairs (𝑷 , 𝑆) in the
test set for which 𝐹𝑤 (𝑷 ) = 𝑆 . Subset (or soft) accuracy is defined in the same way but replacing the identity with
𝐹𝑤 (𝑷 ) ⊆ 𝑆 . Second, we calculate the satisfaction degrees for the various axioms of the voting rule 𝐹𝑤 that the
trained neural network realizes (see Section 5.3 for details).

5 Experimental Setup
We describe all details for designing and evaluating our experiments.

12Though, in principle, other distance/similarity functions can be considered.
13To see almost-everywhere differentiability of the loss functions, use the distributivity of the differential operator over sums, the chain rule,
and the almost-everywhere differentiability of the involved functions (KL, sig, max, ∥ · ∥∞).
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5.1 Voting-Theoretic Parameters
We work with all four profile distributions and with 𝑛max = 77 and𝑚max = 7 in the first experiment and 𝑛max = 55
and𝑚max = 5 in the other experiments. The first experiment does not show a qualitative difference between
these settings, but the latter is computationally more efficient.

For all experiments, we use the Mallows distribution with a parameter rel-𝜙 (randomly generated) that, together
with the number of alternatives, determines the value of the dispersion parameter 𝜙 . According to [6] and [7],
this methodology generates data that more closely resemble those of real elections. We use the Urn-R distribution
[6], where, for each generated profile, 𝛼 is chosen according to a Gamma distribution with shape parameter
𝑘 = 0.8 and scale parameter 𝜃 = 1. The other distributions do not need further parameters.

5.2 Synthetic Data Generation
We can sample profiles in a controlled and realistic manner and produce their corresponding winning sets with
existing voting rules (see Section 3). So we generate synthetic data: Given a profile distribution 𝜇 and a voting
rule 𝐹 , we randomly pick integers 𝑛 ∈ [1, 𝑛max] and𝑚 ∈ [1,𝑚max] and 𝜇-sample a profile 𝑷 with 𝑛 voters and𝑚
alternatives and compute 𝑆 = 𝐹 (𝑷 ). Thus, we generate a dataset 𝐷 =

{
(𝑷 1, 𝑆1), . . . , (𝑷𝑘 , 𝑆𝑘 )

}
.

5.3 Evaluating Axiom Satisfaction
To evaluate the axiom satisfaction of a voting rule (be it realized by a neural network or an existing one), we
sample 400 profiles on which the axioms are applicable. We use the same profile distribution 𝜇 as was used for
training the neural network, and we again randomly choose integers 𝑛 ∈ [1, 𝑛max] and𝑚 ∈ [1,𝑚max] before
𝜇-sampling a profile with 𝑛 voters and𝑚 alternatives. To compute whether an axiom is satisfied for a profile, the
axioms of anonymity, neutrality, and independence require sampling of permutations. We sample, per profile, 50,
50, and𝑤 (𝑚 −𝑤)256 permutations, respectively (where𝑤 is the number of winners according to the rule on the
profile, and hence𝑚 −𝑤 is the number of losers).14

5.4 Hyperparameters
All models use ReLU as the activation function. Our MLP has four hidden layers with 128 neurons each, like
those of [2]. The CNN has two convolution layers with kernel size (5, 1) and (1, 5), respectively (and 32 or 64
channels), followed by three linear layers with 128 neurons. Thus, the first kernel can pick up local patterns in the
rankings of the voters, while the second kernel can pick up local patterns among the 𝑖-th preferred alternatives
of the voters. (Appendix A.2 establishes the optimality of this choice when compared to other kernel sizes and
additional pre-processing.) The WEC has the word embedding layer, then the averaging layer, and then three
linear layers with 128 neurons. For pre-training the word embedding layer with word2vec, we use a corpus size
of 105, an embedding dimension of 200, and a window size of 7.15 The corpus size is chosen large enough so that
no occurrences of the unk token are observed in 1, 000 sampled profiles.
This results in the following numbers of parameters in the setting 𝑛max = 77 and𝑚max = 7: 500, 487 (MLP),

1, 834, 439 (CNN), and 1, 226, 143 (WEC). In the setting 𝑛max = 55 and𝑚max = 5 this reduces to: 193, 285 (MLP),
232, 165 (CNN), and 45, 585 (WEC). Thus, the models have roughly comparable capacities. Section A in the
Appendix motivates these choices via hyperparameter tuning.

14Independence considers more ‘degrees of freedom’, so we take more samples. Specifically, we go through all pairs (𝑥, 𝑦) where 𝑥 is a
winner and 𝑦 a loser, and we sample, for each voter, 4 alternative rankings that, however, have the same relative order of 𝑥 and 𝑦 as the
actual ranking submitted by that voter, and then build 44 = 256 profiles out of these alternative rankings and check that 𝑦 still does not win.
15That is in the setting 𝑛max = 77 and𝑚max = 7. When 𝑛max = 55 and𝑚max = 5, we reduce this to a corpus size of 2 × 104, an embedding
dimension of 100, and a window size of 5.
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For training, we use the AdamW algorithm [37]. We use a batch size of 200. Since we have synthetic data, we
do not use epochs and hence only specify the number of gradient steps. In experiments 1, 2, and 3, these are
15,000, 5,000, and 15,000, respectively. Similar to Anil and Bao [2], we use as a learning rate scheduler cosine
annealing with warm restarts [36]. All results are reported for one fixed seed. (In the Appendix, Table 3 performs
cross validation and Tables 5 and 8 report averaged results across different seeds.) All experiments were run on a
laptop without GPU.

6 Results and Analysis
Within our axiomatic deep voting framework, we answer our three research questions: (1) Are preferences-
aggregating neural networks correct for the right reasons? No. (2) Can they learn voting-theoretic principles by
example? No. (3) Can they synthesize new rules guided by the principles? Yes.

6.1 Experiment 1: Correct for the Right Reasons?
Recent work in computer science has studied the capabilities of neural networks to learn voting rules [2, 10], but
without asking whether “the system performs well for the right reasons” [5, p. 5192]. Here we use voting-theoretic
axioms to shed light on the learning behavior of neural networks, specifically aiming to distinguish solely accurate
versus principled learning.

Design. We train each of the three neural network architectures (MLP, CNN, and WEC) on data from each one
of the three basic voting rules (Plurality, Borda, and Copeland) using four different sampling distributions (IC,
Urn, Mallows, and Euclidean) with the parameters mentioned in Section 5.1. We report the results as relative
accuracy and axiom satisfaction, i.e.,

⟨relative evaluation⟩ = ⟨rule evaluation⟩ − ⟨model evaluation⟩.

For example, if the model has 95% accuracy, then, since the rule has 100% accuracy, there is a relative accuracy
loss of 100% − 95% = 5%. If the model has 35% satisfaction of the independence axiom and the rule only 30%, then
the relative independence satisfaction is 30% − 35% = −5%, so there is a relative independence gain of 5%.

Results. The relative accuracy and axiom satisfaction when sampling with the IC distribution are given in
Figure 4. (Section B in the Appendix shows similar results for the other distributions.) The three architectures
do not differ much in accuracy. The best accuracy is achieved for the simple Plurality rule, while the complex
Copeland rule decreases accuracy.

Notably, across all voting rules, architectures, and distributions, we see large losses in neutrality despite only
low losses in accuracy (e.g., 4.6% relative identity-accuracy loss but 19.5% relative neutrality loss for the WEC
architecture when trained on the Plurality rule). Large anonymity losses are also observed under the MLP and
CNN architectures (the WEC is anonymous by design). This is particularly noteworthy since anonymity and
neutrality are 100% satisfied by the given voting rules. The MLP and CNN models regularly show larger neutrality
losses than anonymity losses (with the models trained on Plurality demonstrating the smallest such difference).
Regarding the other axioms, all models adhere perfectly to Pareto, in accordance with the voting rules on

which they are trained. The MLP and WEC models trained on Plurality seem to exhibit relative Condorcet gains,
but Condorcet losses are found for the CNN model. Along a similar line, the MLP model trained on Borda obtains
relative Condorcet gains, but this is not the case for the CNN and WEC models. Since Copeland always satisfies
the Condorcet principle, there is a relative Condorcet loss for all models—yet, it is rather small. The MLP and
WEC models trained on Plurality and Borda, as well as the CNN model trained on Plurality, satisfy independence
to a similar degree as the rules do on which they are trained. All models trained on Copeland exhibit relative
independence gains, and the same holds for the CNN model trained on Borda.
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Fig. 4. Training the three architectures (MLP, CNN, and WEC) on data from Plurality, Borda, and Copeland (the three bars in
each plot) with IC samples and comparing the errors in both accuracy and axiom satisfaction. The error describes the rule’s
evaluation minus the model’s evaluation. Intuitively, 2.8% accuracy error means 2.8% loss in accuracy: the rule by definition
is correct so it has 100% accuracy, but the model obtains only 97.2% accuracy; similarly, −6.5% Condorcet error means 6.5%
gain in accuracy: the rule has 73.25% Condorcet satisfaction, but the model obtains 79.75% Condorcet satisfaction.

Discussion. Regarding the learnability of different voting rules, the simplicity of Plurality is probably the
reason behind the high accuracy with which all models learn it. However, this simplicity also renders Plurality
problematic in other contexts [32].

The models take a stance on the well-documented tension between anonymity and neutrality.16 They tend to
favor outcomes that align more closely with the former than with the latter. This inclination exposes an inherent
bias within neural networks when navigating fundamental democratic axioms.

16No voting rule that always elects a single winner can simultaneously be anonymous and neutral.
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As the architectures are not invariant to permutations of the input data, the severe violations of neutrality
(and of anonymity for MLPs and CNNs) are not a priori surprising. However, these violations persist even for
high accuracy with respect to rules that are perfectly neutral and anonymous.17

Overall, our experiment on accurate versus principled learning highlights the importance of the reasons behind
automated decision-making. Outcomes that mimic well-defined voting rules are arguably still unreliable, since
they do not come with a guarantee of respecting the principles on which those rules are built.

6.2 Experiment 2: Learning Principles by Example?
Can we teach neural networks voting-theoretic principles, beyond merely presenting data from various voting
rules? A natural approach to integrate expert knowledge in neural networks is data augmentation. In the voting
context, this was proposed by Xia [52] but has not been tested in practice, to the best of our knowledge. We
focus on the anonymity and neutrality axioms, since they were violated most, and we also test the effects of data
augmentation on the model’s accuracy.
Asking if data augmentation helps can be understood in two ways: First, does training with augmented data

increase axiom satisfaction without diminishing accuracy? Second, if so, does it do this better than just training
with sampled data points? A ‘yes’ to the first question improves data efficiency: we get at least as good a model
even when only part of the data is ‘real’ and the rest is augmented. A ‘yes’ to the second question means that we
can actually improve our model’s performance in the preceding experiment.

Design. We test data augmentation in two versions. In the first version, we form an initial dataset (i.e., pairs
of a sampled profile with corresponding winning set) and we train an architecture on this dataset. Then we
continue training it on augmented data points, i.e., data points obtained from the initial data points by renaming
alternatives (‘neutrality variations’) or by renaming voters (‘anonymity variations’). For comparison, we make a
copy of our model after the initial training and continue training the copy with the same number, but sampled data
points (rather than augmented data points). If the model trained on augmented data improves axiom satisfaction
without worsening accuracy, we get a ‘yes’ to the first question. If it also is better than the copied model, we also
get a ‘yes’ to the second question. Otherwise, any improvement only comes from a mere increase in the quantity
of data points and not from their quality.
A potential issue of this version is that, during the continued training with augmented data, the model does

not see any further sampled data and hence might lose in accuracy. The second version fixes this issue by making
sure that each training batch consists of 𝑝 percent sampled data points with the remaining data points being
neutrality variations (resp., anonymity variations) of those sampled data points. For different choices of 𝑝 , we
then test the models’ achieved axiom satisfaction and accuracy. We get a ‘yes’ to the first (resp., second) question
if axiom satisfaction and accuracy are not worse (resp., better) for lower values of 𝑝 when compared to 𝑝 = 100%
(i.e., only sampled data).

Results. Results for IC-sampling and neutrality augmentation are exhibited in Figure 5. (Appendix C presents
results also for other distributions and anonymity augmentation.) Overall, we find a ‘yes’ to the first question but
a ‘no’ to the second: training with augmented data does not hurt accuracy, but it does not reliably improve axiom

17Actually, whether this is surprising depends on which of the following two intuitions one has. The first intuition regards these results as
surprisingly bad: Given the high accuracy, we may expect that the neural network should have ‘gotten the idea’ of the voting rule, and hence
of its anonymity and neutrality, so the amount of violations is surprising. The second intuition regards the results as surprisingly good: For
anonymity and, respectively, neutrality to be satisfied on a given profile, we require the neural network to output the correct answer on 50
permutations of the profile, while accuracy requires being correct only on that very profile, so it is not surprising that the neural network
struggles more with anonymity and neutrality. But whether surprising or not, the results stay the same: for the specified percentages of
considered profiles, we have violations in anonymity and neutrality, i.e., we do not have high certainty (at least one failure in 50 checks) that
the neural network outputs the desired answer under permutations.
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satisfaction. In the first version of the experiment depicted at the top row and the left plot of the second row in
Figure 5, augmented data does not seem to be advantageous for neutrality relatively to sampled data (on the
contrary, it often seems harmful, e.g., when applying CNN or WEC); in the second version of the experiment
depicted at the bottom row and the right plot of the second row in Figure 5, the ratio 𝑝 between sampled and
augmented data does not seem to correlate with neutrality satisfaction either.

In more detail, regarding the first version, the conclusion of our experiment 1 is again apparent: even when the
models excel in accuracy, their satisfaction of neutrality and anonymity remains consistently below perfect—this
does not change when considering augmented data. For the CNN and the WEC, neutrality satisfaction with
augmented data is (almost) always below the corresponding one with sampled data, while for the MLP it is mixed.
The accuracy of the models is generally not hurt by augmented data. Indeed, it does not seem to vary much
between sampled and augmented data. Though, in some cases, data augmentation is detrimental to accuracy: e.g.,
the identity accuracy of the CNN after 1000 gradient steps (on top of 500 steps of pretraining) is up to 10% lower
with augmented data than with sampled data.

Regarding the second version, when 𝑝 < 10%, i.e., with almost only augmented data, both accuracy and
neutrality satisfaction are unsatisfactory, so data augmentation only becomes relevant for 𝑝 ≥ 10%. Here accuracy
is stable: it does not vary by more than 5%. In some cases, neutrality is equally stable: for the CNN on all rules
and the MLP on Borda (certainly for 𝑝 ≥ 25%, with slightly worse neutrality satisfaction for smaller 𝑝). In the
remaining non-stable cases, the best neutrality satisfaction is achieved for 𝑝 = 100%, i.e., without augmented
data—with only negligible exceptions.18 Thus, neither in the stable nor the unstable cases can we see reliable
comparative improvements in neutrality satisfaction with more neutrality augmented data.

Discussion. Learning voting-theoretic principles by examples—augmented to the training data—does not seem
to work for neural networks: Comparatively more neutrality-augmented or anonymity-augmented data does not
necessarily lead to higher neutrality or anonymity satisfaction. However, an advantage of data augmentation is a
drastic increase in data efficiency when we only aim for accuracy. For instance, sampling only 10% of the total
data set (and using neutrality augmented data for the remaining 90%) does not substantially decrease the MLP’s
or WEC’s accuracy in comparison to sampling the whole data set. This is crucial if we use real and not sampled
election data, where having access to a vast amount of data points is practically impossible. Even when more data
is needed to increase the accuracy of network, we could build an appropriate data set based on a limited amount
of real data points and then augment it via the neutrality axiom. This gives us an answer to the two questions
raised earlier on: ‘Yes’, training with additional, augmented data points can increase axiom satisfaction, but ‘no’,
not better than just training with equally many sampled data points.

6.3 Experiment 3: Rule Synthesis Guided by Principles?
We saw that neural networks, when trained on data from established voting rules, struggle to vote with principles.
This raises the question: can we directly train neural networks to form principled collective decisions, without
relying on any pre-existing voting rules? This will be limited by Arrow’s Impossibility Theorem [4]: a voting rule
cannot simultaneously satisfy anonymity, Pareto, and independence. Neural network-based approaches also face
this impossibility. However, how close can we get to full axiom satisfaction? We design an optimization task,
using custom loss functions, to guide neural networks in learning novel and principled voting rules.

18The only two exceptions are the CNN on Plurality (where neutrality is most satisfied at 𝑝 = 75% but to a very similar degree as for 𝑝 = 100%)
and the CNN on Copeland (where neutrality is minimized at 𝑝 = 25%). Moreover, CNN on Borda and MLP on Copeland have a local—albeit
not global—minimum at 𝑝 = 25%. Thus, while there might be some special cases where neutrality is improved in the highly augmented
scenario, this is not enough to consider data augmentation as a successful strategy to improve neutrality satisfaction (which is what we are
concerned with here).

Journal of Artificial Intelligence Research, Vol. 83, Article 25. Publication date: August 2025.



Learning How to Vote with Principles • 25:17

Fig. 5. Top row and second row on the left: The first version. Pretraining on IC-sampled data from Plurality, continuing with
neutrality variations and comparing this with identity accuracy to sampled data. Rest: The second version.
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Design. We train each one of the three neural network architectures (MLP, CNN, andWEC) on the loss functions
defined in Section 4.4 which represent the axioms anonymity, neutrality, Condorcet, Pareto, and independence.
Since neural networks could attempt to vacuously satisfy the axioms by proposing no winner, we also consider
the “No-winner” loss function, which demands the winning sets to be nonempty. Moreover, by Arrow’s Theorem,
the axioms cannot be jointly satisfied and will, hence, negatively influence each other. So optimizing for all
axioms is not necessarily the best. We pick, for each architecture, a set O of objectives that we optimize for. For
WEC, we choose: no winner, Condorcet, and Pareto. (Appendix D.5 establishes in an ablation study the optimality
of this choice.) For MLP and CNN, we add: anonymity and independence. Then the optimization problem is:

argmin
𝑤

∑︁
𝑂∈O

E
P∼𝐷

[
𝐿𝑂 (𝑓𝑤, P)

]
,

where the loss functions 𝐿𝑂 are described in Section 4.4 and 𝐷 is the chosen distribution of profiles P. Note that,
unlike the previous experiments, this is an unsupervised learning task.
In order to have an architecture that is also neutral by design (not just anonymous by design like the WEC),

we design a further decoding function in addition to the one used so far (Section 4.3). This neutrality-averaged
decoding works as follows [cf. 10]. Given an input profile, we first generate all alternative-permuted versions of
the profile, then compute the logits-predictions of the model on each of those permuted profiles (in one batch),
next de-permute the predictions again and average all of them, and finally we turn those average logits into a
winning set with the decoding function used so far.

Thus, WEC with neutrality-averaged decoding is anonymous and neutral by design. For the other architectures,
we also test a decoding method that is neutrality-and-anonymity-averaged. For that, given an input profile, we
first randomly generate 12 alternative-permuted versions of it, and, for each of those, we also randomly generate
10 voter-permuted versions and, as before, compute the averaged logits and from those the winning set. The
numbers are explained as follows: Neutrality-averaging requires, with at most 5 alternatives, considering at most
5! = 120 permutations; hence neutrality-and-anonymity-averaging also considers 12 × 10 = 120 permutations
(checking all 55! ≈ 1073 voter permutations would be infeasible).

Results. Table 1 shows the axiom satisfaction of different neural networks (bottom) and, for comparison, of
several known rules from voting theory (top), all using IC sampling. (Appendix D shows the results for the other
distributions. See also Figure 16 in the Appendix for the evolution of the loss during optimization.)

The best neural-network based rule in terms of axiom satisfaction is always the neutrality-averaged WEC, with
close contestants the neutrality-averaged CNN and MLP. The neutrality-averaged WEC outperforms the classic
Plurality, Borda, and Copeland rules in every single axiom, except for a slight loss on Condorcet. Even when we
consider more modern rules in voting theory, the neutrality-averaged WEC is competitive: the existing rule with
highest axiom satisfaction is Stable Voting and its edge is marginal, with its average axiom satisfaction being less
than 1% higher than that of the neutrality-averaged WEC.19 In fact, when averaging five runs of checking axiom
satisfaction (which always involves some stochasticity), the neutrality-averaged WEC even comes out better than
the rules: see Table 5 in the Appendix. (This is also true for Euclidean but not for Mallows and Urn.) In any case,
the neutrality-averaged WEC has a comparably good axiom satisfaction as the best voting rules known today.
In addition to examining axiom satisfaction, we should also consider how often the examined rules produce

the same outcomes: because similar axiom satisfaction does not imply similarity of outcomes.20 Table 2 describes
similarity in outcome compared to the five closest rules, using IC sampling (again, see Appendix D for the other
distributions). In particular, we see that the rule discovered by the neutrality-averaged WEC model is substantially

19Table 4 in the Appendix suggests that more gradient steps do not further improve the results.
20For example, the Blacks and Weak Nanson rules are close in average axiom satisfaction (less than 1% difference), but Table 2 shows that
more than 8% of the time they propose a different set of winners.

Journal of Artificial Intelligence Research, Vol. 83, Article 25. Publication date: August 2025.



Learning How to Vote with Principles • 25:19

Table 1. Axiom satisfaction of different rules (top part of the table) and models (bottom part of the table), for IC sampling.
Rounded to one decimal. The names of the models are explained as follows: The letters after the architecture type indicate
how the voting rule is computed from the model: p–plain (i.e., no averaging), n–neutrality-averaged, na–neutrality-and-
anonymity-averaged. The letters in the brackets indicate which axioms the model optimized for during training: NW–No
winner, A–Anonymity, C–Condorcet, P–Pareto, I–Independence. All models have been trained for 15k gradient steps with
batch size 200.

Anon. Neut. Condorcet Pareto Indep. Average

Plurality 100 100 80.2 100 28.5 81.8
Borda 100 100 95.5 100 37.2 86.5
Anti-Plurality 100 100 74.2 100 24.8 79.8
Copeland 100 100 100 100 28.0 85.6
Llull 100 100 100 100 26.8 85.4
Uncovered Set 100 100 100 100 27.8 85.5
Top Cycle 100 100 100 100 29.0 85.8
Banks 100 100 100 100 27.8 85.5
Stable Voting 100 100 100 100 43.0 88.6
Blacks 100 100 100 100 35.2 87.1
Instant Runoff TB 100 100 94.8 100 28.2 84.6
PluralityWRunoff PUT 100 100 95.0 100 25.5 84.1
Coombs 100 100 96.2 100 34.5 86.2
Baldwin 100 100 100 100 39.2 87.9
Weak Nanson 100 100 100 100 40.0 88.0
Kemeny-Young 100 100 100 100 39.2 87.9

MLP p (NW, A, C, P, I) 77.8 75.8 92.5 100 39.5 77.1
MLP n (NW, A, C, P, I) 89.2 100 95.0 100 42.2 85.3
MLP na (NW, A, C, P, I) 89.8 86.8 95.5 100 36.5 81.7
CNN p (NW, A, C, P, I) 85.2 67.2 92.0 100 39.5 76.8
CNN n (NW, A, C, P, I) 92.2 100 94.5 100 40.0 85.4
CNN na (NW, A, C, P, I) 86.0 86.5 94.8 100 34.0 80.2
WEC p (NW, C, P) 100 72.5 94.2 100 41.8 81.7
WEC n (NW, C, P) 100 100 96.8 100 41.2 87.6

different from the existing voting rules: it proposes different outcomes than each one of them, according to
identity accuracy, at least 9.3% of the time (resp., 10.6% for Mallows, 11.1% for Urn, and 7.8% for Euclidean, see
Tables 7, 10, and 13 in the Appendix). In comparison, Stable Voting, which was found best in Table 1, disagrees
with Borda and Copeland 8.9% of the time and with Weak Nanson and Blacks only 6.6% of the time. Thus, the
discovered rule not only is competitive in axiom satisfaction, it also is novel, i.e., substantially different from
existing voting rules.
Moving from hard to soft accuracy, the neutrality-averaged WEC produces winning sets that are a subset

(resp., superset) of those of existing rules at least 95.4% (resp., 95.3%) of the time for IC, and similarly for other
distributions. This means that even if the results of the model differ from those of existing voting rules, very
frequently they do so by only excluding or by only adding certain winning alternatives. This is not unique to our
ML model—it is also the case between known voting rules that exhibit high axiomatic satisfaction: for example,
the outcome of Stable Voting is a subset (resp., superset) of the outcome of Weak Nanson 97.9% (resp., 94.35%) of
the time.

To illustrate the difference between the discovered and the existing rules, Figure 6 shows an example of a profile
where the winning set provided by the neutrality-averaged WEC is different to all the winning sets provided by
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Table 2. Similarities between the rules. Computed on 10,000 IC-sampled profiles. For example, in the top table (‘identity
accuracy’), the entry 90.5 in row ‘WEC n’ and column ‘Stable Voting’ means that, in 90.5% of the sampled profiles, Stable
Voting outputs the identical winning set as the neutrality-averaged WEC. Hence the values below the diagonal are symmetric
and thus omitted. In the bottom table (‘subset accuracy’), the entries show when the rule in the row outputs a winning set
that is a subset of the rule in the column. So the entry 92.7 in row ‘WEC n’ and column ‘Stable Voting’ means that, in 92.7%
of the sampled profiles, the winning set outputted by the neutrality-averaged WEC is a subset of the winning set outputted
by Stable Voting. This table is not symmetric, because the entry 95.4 in row ‘Stable Voting’ and column ‘WEC n’ means
that, in 95.4% of the sampled profiles, the winning set outputted by Stable Voting is a subset of the model’s winning set
(equivalently, the model’s winning set is a superset of the rule’s winning set).

Identity accuracy WEC n Blacks Stable Voting Borda Weak Nanson Copeland

WEC n 100 91 90.5 89.5 88.4 87.7
Blacks 100 95.71 95.13 91.26 90.57
Stable Voting 100 90.84 93.5 91.67
Borda 100 86.39 85.7
Weak Nanson 100 92.43
Copeland 100

Subset accuracy WEC n Blacks Stable Voting Borda Weak Nanson Copeland

WEC n 100 93.6 92.7 93.9 93 95.3
Blacks 95.6 100 96.53 97.3 95.57 98.2
Stable Voting 95.4 97.21 100 94.51 97.9 99.59
Borda 93.8 95.13 91.66 100 90.7 93.33
Weak Nanson 92 92.69 94.35 89.99 100 97.71
Copeland 90.4 91.29 91.73 88.59 94.15 100

1 2 3 4 5 6 7 8

𝑎 𝑒 𝑑 𝑎 𝑒 𝑏 𝑒 𝑎

𝑏 𝑏 𝑏 𝑐 𝑏 𝑎 𝑎 𝑏

𝑒 𝑑 𝑐 𝑏 𝑐 𝑒 𝑐 𝑑

𝑑 𝑎 𝑒 𝑒 𝑎 𝑐 𝑑 𝑒

𝑐 𝑐 𝑎 𝑑 𝑑 𝑑 𝑏 𝑐

{𝑎} neutrality-averaged WEC, with sigmoids (rounded) 𝑎:.51, 𝑏:.49, 𝑐 :.31, 𝑑 :.32, 𝑒 :.43
{𝑏} Blacks, Stable Voting, Borda, Weak Nanson, Copeland

{𝑎, 𝑒 } Plurality, PluralityWRunoff PUT
{𝑒 } Instant Runoff TB, Anti-Plurality

{𝑎,𝑏} Llull, Uncovered Set, Banks, Coombs, Baldwin, and Kemeny-Young
{𝑎,𝑏, 𝑒 } Top Cycle

Fig. 6. Profile where the ‘WEC n’ model disagrees with existing voting rules. The winning sets for each rule are mentioned
below the table.

the considered existing voting rules. The choice of the WEC also has intuitive plausibility: it chooses alternative 𝑎
which, among the eight voters, is three times the most preferred option and two times the second-most preferred
option. The sigmoids indicate that alternative 𝑏 was also a close competitor for the winning set, and would indeed
win under many of the known rules from voting theory.
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Discussion. The reasonwhy theWECoutperforms the other two architectures is that, because it is anonymous by
design, it is enough to use the neutrality-averaged decoding to get a model that is anonymous and neutral. Since the
MLP and CNN are not anonymous, they need neutrality-and-anonymity-averaged decoding to become anonymous
and neutral by design. This, however, needs infeasibly many permutations, so it can only be approximated via
sampling permutations. Here, however, the tension between the axioms of anonymity and neutrality resurfaces:
sampled neutrality-and-anonymity-averaging can result in negative interference with the other axioms yielding
worse performance than just neutrality-averaging (e.g., the CNN rules in Table 1). Mere neutrality-averaging also
influences the satisfaction of the other axioms, but in this case not in a negative way.21

Moreover, for the WEC just three optimization objectives were enough to obtain the above competitive results.
Since the MLP and CNN are not anonymous by design, they needed to optimize for anonymity and independence
as well. The WEC interestingly had enough implicit inductive bias toward satisfying independence—again
highlighting non-trivial interference of the axioms and the network architecture.

The neural networks beat the classic voting rules in terms of axiom satisfaction while being comparable to the
best voting rules known today. This may be taken to suggest that existing rules may already be close to optimal
axiom satisfaction. In other words, they are in the (approximate) Pareto front of axiom satisfaction. At the same
time, even if the novel rules derived from axiom optimization inherit the opacity of neural networks, they assure
high adherence to key normative principles in collective decisions. Since these newly discovered rules were
substantially different from existing rules, they extend the boundaries of what is so far explored in voting theory.

7 Discussion
With our axiomatic deep voting framework, we investigated the space of all voting rules by fruitfully combing
voting theory and machine learning. The neural network explores the space and the voting-theoretic axioms
evaluate the network, thus guiding the exploration. The universal approximation theorems [14, 29] ensure that
the neural networks are dense in the space of all voting rules, so all areas of that space can be explored with
axiomatic deep voting. Arrow’s Impossibility Theorem [4] establishes insurmountable divisions of that space: e.g.,
the area of rules satisfying anonymity and Pareto does not intersect the area of rules satisfying independence.

The importance of our results for AI is twofold. First, the axiomatic evaluation offers another cautionary tale
that accuracy is not everything: Neural networks can have high accuracy (descriptively good) without following
the right reasons (normatively bad). Second, this changes, however, when we move from the supervised setting
of learning rules from examples to the unsupervised setting of directly optimizing axiom satisfaction. We were
able to do this by translating the voting-theoretic axioms into corresponding loss functions. Having a way to
optimize the axioms is important because the axioms can be seen as mathematical formalizations of important
normative notions in modern machine learning. For example:

• Bias: anonymity says that the neural network is not biased towards particular individuals.
• Fairness: neutrality demands that the neural network treats all alternatives equally.
• Value-alignment: the Pareto principle requires that if all individuals value one alternative more than another,
then the neural network aligns with this; and similarly for the Condorcet principle.

• Interpretability: independence provides a sense of ‘compositionality’ when interpreting the network—to
understand its choice for two given alternatives, we can ignore all other alternatives.

Hence, our axiomatic optimization provides a way of improving the neural network—in a mathematically precise
sense—regarding bias, fairness, value-alignment, and interpretability.

Moreover, qua interdisciplinary project, our results are also relevant for voting theory. Axiomatic deep voting
offers a new tool for the field’s central goal of exploring the space of all voting rules. While existing voting rules
21We did not use neutrality-averaging in the previous experiments because it would not directly correspond to the binary cross entropy loss
and the interference with the other axioms blurs the axiomatic evaluation of the neural network.
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are crafted by human insight, we could find—in a completely automated process—novel voting rules that are
comparable in terms of axiom satisfaction to the best rules known today. This provides a promising starting point
for an analytic exploration of new axiom-optimal voting rules and the influence the axioms exert on each other.

Limitations. We tested a wide range of standard neural network architectures. However, future work could
also investigate further architectures like Set Transformers, Graph Isomorphism Networks, or Deep Sets (which
were used by Anil and Bao [2]) and, more generally, the transformer architecture (as a refinement of our word
embedding architecture). We also covered the most important voting-theoretic axioms, but yet more can be
considered, e.g., monotonicitiy and transitivity (the latter then requires architectures that are not transitive by
design). Finally, the large number of permutations causes a high statistical variance in testing the satisfaction of
the independence axiom.

Future work. First, more options in generating the dataset can be explored. For example, we can consider the
extrapolation task in which the model has to find a general rule after only observing the rule on a small part
of the input space, namely the profiles where some given voting rules agree or satisfy a given axiom. Or we
can consider the interpolation task in which the model sees data of different rules and has to find a compromise
between their outputs.
Second, we can implement further social choice theory frameworks. Since we already output logits corre-

sponding to the alternatives, we could, instead of winning sets, also consider preference rankings or welfare
functions. It would also be interesting to consider judgment aggregation, which includes reasoning about logical
implications between the alternatives.

Third, it seems promising to bridge notions of explainability in voting theory [8, 11, 42] and notions of explain-
ability in AI [1]. In particular, is it possible to extract out a symbolic representation (e.g., in logic programming)
of the rule that the model learned?
Fourth, studying the voting-theoretic concept of manipulatability via neural networks [27] can be further

connected to machine learning notions like adversarial attacks [22] or performativity [46].
Fifth, from the point of view of geometric deep learning,22 axioms represent symmetries that the neural networks

should learn. For example, anonymity says that the neural network should be invariant under the group action
of the voter-permutation group on profiles; and neutrality says that the neural network should be equivariant
under the group action of the alternative-permutation group on profiles and winning sets, respectively. It seems
worth exploring this connection to geometric deep learning.

8 Conclusion
We introduced the axiomatic deep voting framework to study how neural networks aggregate preferences. We
found that neural networks do not learn to vote with principles, despite achieving high accuracy, when trained
on data from existing voting rules—even when augmented with axiom-specific data. However, they do learn to
vote with principles when they directly optimize for axiom satisfaction, which we achieved by translating axioms
into custom loss functions. The axiomatic deep voting framework promises fruitful further investigation both in
voting theory (new ways of exploring the space of voting rules) and AI (a mathematically precise testing ground
for normative notions like bias and value-alignment).
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A Hyperparameter Tuning
In this section, we investigate different hyperparameter choices for our models to motivate the choices we make
in the main text.

A.1 Model Sizes
First, regarding the MLPs, Figure 7 tests the performance of different sizes. As mentioned in Section 5.4, we
use the same sizes for our MLPs as Anil and Bao [2]: four hidden layers with 128 neurons each. To test this
choice, we compare it to a smaller MLP with only two hidden layers with 128 neurons each, and to a larger MLP
with six hidden layers with 128 neurons each plus layer norm. Figure 7 shows that all three MLPs achieve very
similar accuracy. The larger MLP learns a bit more quickly than the other two, but it also has a higher variance in
achieved accuracy. Hence the larger MLP does not yield a performance improvement. The results suggest that a
smaller MLP might work, too, but, for continuity with the literature on the topic, when then choose their model
sizes.
Second, regarding the CNNs and the WECs, the choice for the MLP size also dictates their sizes: in order to

have a comparable capacity, they should have a roughly similar number of parameters. Indeed, with our choices
of numbers and kinds of layers for the CNN and the WEC, we get, as described in Section 5.4, models that are
roughly comparable in size.

A.2 CNN Kernels and Pre-processing
Figure 8 investigates different choices for the hyperparameters of the CNN architecture. In Section 5.4, we
described our choice: the two convolution layers have kernel sizes (5, 1) and (1, 5), respectively. Thus, the first
kernel can pick up local patterns in the rankings of the voters, while the second kernel can pick up local patterns
among the 𝑖-th preferred alternatives of the voters.

In image processing, ‘quadratic’ kernel sizes—e.g., (3, 3)—are more common, to pick up correlations of pixels
with their surrounding pixels. In the voting setting, at least conceptually speaking, a quadratic surrounding
does not make too much sense: Why should there be important ‘diagonal’ correlations, say between the 𝑖-th

Fig. 7. Different sized MLPs and their learning performance. The ‘small’ MLP has two hidden layers with 128 neurons each,
the ‘standard’ MLP has four hidden layers with 128 neurons each (our and the literature’s choice), and the ‘large’ MLP has
six hidden layers with 128 neurons each plus layer norm.
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preferred alternative of voter 𝑘 and the 𝑖 + 2-th preferred alternative of voter 𝑘 + 3, especially if the voters should
be permutable? On the contrary, vertical and horizontal correlations are important: Vertically, the first kernel
captures patterns of correlation between a given alternative in a voter’s ranking and more or less preferred
alternatives in that ranking; horizontally, the second kernel captures patterns of correlation between the 𝑖-th
preferred alternative of a voter and the 𝑖-th preferred alternative of other voters.
Figure 8 shows that our choice of kernel size (top left) indeed achieves overall better results than a quadratic

choice of kernel size (top right). Only for Condorcet and Independence, the quadratic choice is slightly better for
some rules.
One might wonder, if one could still leverage diagonal correlations by first reordering the rankings of the

voters in a profile so that ‘similar’ rankings are next to each other, before feeding the profile into the CNN. With
such a pre-processing of the input, a quadratic kernel could be used since diagonal comparisons now make sense
in such a similarity reordered profile. A standard way to formalize this notion of similarity is via Kendall Tau
distance (as defined in footnote 8). We consider two versions of reordering a given profile 𝑷 = (𝑃1, . . . , 𝑃𝑛):

• Global: Compute, for 𝑘 = 2, . . . , 𝑛, the Kendall Tau distance 𝑑𝑘 between 𝑃1 and 𝑃𝑘 . Then reorder the profile
starting with 𝑃1 followed by the other rankings with ascending 𝑑𝑘 . (In case of a tie, pick the ranking with
minimal index first.)

• Local: The reordered profile 𝑷 ′ = (𝑃 ′
1, . . . , 𝑃

′
𝑛) is computed recursively. Start with 𝑃 ′

1 := 𝑃1. Given 𝑃 ′
𝑘
, we

determine 𝑃 ′
𝑘+1 as follows. Go through the rankings that have not been picked yet (i.e., {𝑃1, . . . , 𝑃𝑛} \

{𝑃 ′
1, . . . , 𝑃

′
𝑘
}) and compute their Kendall Tau distance to 𝑃 ′

𝑘
. Then 𝑃 ′

𝑘+1 is the ranking among these with the
smallest Kendall Tau distance. (Again, tie-break via the indices.)

Figure 8 shows that adding either the global or the local version of Kendall Tau pre-processing overall does not
reliably help the performance compared to our chosen setting (neither for our choice of kernel size nor for the
quadratic choice). In some cases we do observe an improvement, as for example in the independence axiom
satisfaction when learning the Copeland rule—however, this always comes with an additional loss, either in the
accuracy or in the satisfaction of other axioms such as anonymity and neutrality.

A.3 Cross Validation
Finally, we corroborate our choice of hyperparameters by establishing their robust learning capabilities via cross
validation in Table 3. For this, we IC-sample a fixed dataset of 100, 000 data points. We split the dataset into 10
folds (each of size 10, 000). Looping over 𝑘 = 0, . . . , 9, we take fold 𝑘 as the test set and train the model on the
data in the other 9 folds for 8 epochs. We record the achieved accuracy and loss (both on the training and the test
set). Table 3 shows that, for all architectures with their chosen hyperparameters, we always get a high accuracy
with little variance. This corroborates the robust learning capabilities of our architectures.

B Experiment 1
We run the ‘correct for the right reasons’ experiment from Section 6.1 in more settings, reported in Figure 9
(part 1) and Figure 10 (part 2).

C Experiment 2
We add further results to the ‘learning principles by example’ experiment from Section 6.2. Figure 11 and 12 show
different choices of architecture, rules, and distribution for the first version of the experiment. Figure 13 and 14
show different choices of architecture, rules, and distribution for the second version of the experiment.

D Experiment 3
We add further results on the ‘rule synthesis guided by principles’ experiment (Section 6.3).
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[(5, 1) , (1, 5) , 32, no KT] [(3, 3) , (3, 3) , 32, no KT]

[(5, 1) , (1, 5) , 32, KT global] [(3, 3) , (3, 3) , 32, KT global]

[(5, 1) , (1, 5) , 32, KT local] [(3, 3) , (3, 3) , 32, KT local]

Fig. 8. Different hyperparameters of CNNs and their performance. The description [(5, 1), (1, 5), 32, no KT] means that, for
this CNN, the first kernel has size (5, 1), the second kernel has size (1, 5), the number of channels is 32, and the input is not
Kendall Tau preprocessed. Similarly for the other descriptions. (The top left plot is our standard CNN setting and repeated
from Figure 9 for convenience.)
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Table 3. Cross validation of the three architectures on a dataset with 100, 000 data points IC-sampled from the Plurality rule
with up to 55 voters and 5 alternatives. Training is for 8 epochs with a batch size of 200 (hence 8 × 90,000

200 = 3, 600 gradient
steps).

MLP
Testing fold number Train loss Train accuracy (in %) Test loss Test accuracy (in %)

0 0.013 97.7 0.031 95.1
1 0.013 97.7 0.033 94.8
2 0.012 97.9 0.032 95.4
3 0.009 98.5 0.031 95.4
4 0.018 96.9 0.038 94.4
5 0.018 96.9 0.04 94.1
6 0.025 95.8 0.042 93.7
7 0.011 97.9 0.03 95.1
8 0.013 97.7 0.029 95.9
9 0.008 98.7 0.025 96

Avg. 0.014 97.6 0.033 95
Std. dev. 0.005 0.8 0.005 0.7

CNN
Testing fold number Train loss Train accuracy (in %) Test loss Test accuracy (in %)

0 0.021 96.5 0.023 96.1
1 0.015 97.2 0.019 96.8
2 0.009 98.7 0.011 98.3
3 0.012 98 0.015 97.3
4 0.016 97.3 0.019 96.9
5 0.01 98.5 0.011 98
6 0.009 98.4 0.012 98
7 0.02 96.3 0.02 96.4
8 0.014 97.3 0.019 96.6
9 0.024 95.8 0.029 95.4

Avg. 0.015 97.4 0.018 97
Std. dev. 0.005 0.9 0.005 0.9

WEC
Testing fold number Train loss Train accuracy (in %) Test loss Test accuracy (in %)

0 0.005 99.4 0.006 99.5
1 0.005 99.7 0.005 99.8
2 0.006 99.6 0.006 99.5
3 0.007 99.3 0.008 99.1
4 0.035 96.3 0.037 95.8
5 0.004 99.8 0.004 99.9
6 0.012 98.6 0.014 98.5
7 0.01 99 0.011 98.7
8 0.01 98.5 0.009 98.6
9 0.011 98.4 0.011 98.3

Avg. 0.01 98.8 0.011 98.8
Std. dev. 0.009 1 0.009 1.1
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Fig. 9. Part 1 of more settings of experiment 1 (Section 6.1). Varying architectures, rules, and sampling, while comparing the
errors in both accuracy and axiom satisfaction.
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Fig. 10. Part 2 of more settings of experiment 1 (Section 6.1). Varying architectures, rules, and sampling, while comparing the
errors in both accuracy and axiom satisfaction.
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Fig. 11. The first version of experiment 2 (Section 6.2) with further architectures, rules, and distributions.
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Fig. 12. The first version of experiment 2 (Section 6.2), but for the anonymity axiom (instead of neutrality). Since the WEC is
anonymous by design, this can only be tested for MLP and CNN.

Table 4. IC sampling: The result of keeping on training an WEC model. Each round adds 20k gradient steps to the previous
one. Round 1 is with a learning rate of 10−3, round 2 with 10−4, round 3 with 5 ∗ 10−5, and round 4 the same but with added
optimization of independence.

Anon. Neut. Condorcet Pareto Indep. Average

WEC n (NW, C, P, round 0) 100 100 97.5 100 46 88.7
WEC n (NW, C, P, round 1) 100 100 100 100 38.5 87.7
WEC n (NW, C, P, round 2) 100 100 100 100 34.8 87
WEC n (NW, C, P, I, round 3) 100 100 100 100 31.8 86.3

D.1 More on the Experiment with IC
Regarding difference-making profiles, Figure 6 in the main text shows a profile where the model strongly disagrees
with its 5 closest voting rules, i.e., the model’s winning set does not intersect the winning set of these rules.
Figure 15 here shows a profile where the model weakly disagrees with all considered voting rules, i.e., the model’s
winning set is not identical with the winning set of these rules. (For the main text profile, the model also happens
to weakly disagree with all considered rules.) We found these profiles by going through 10,000 IC-sampled profiles
and picking the weakly or strongly disagreeing profile with the smallest number of voters.
Table 4 suggests that further optimization does not further improve axiom satisfaction.
Table 5 shows the statistical robustness of the axiom satisfaction achieved by the model.
Figure 16 shows the evolution of the semantic losses during optimization and the run times, showing that the

WEC not only achieves the best results but also does so most quickly.

D.2 The Experiment with Mallows
Table 6 shows the result of the experiment from Section 6.3 but with Mallows sampling (instead of IC sampling),
using the parameters discussed in Section 5.1. Table 7 shows how similar the best model is to its closest rules.
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Fig. 13. The second version of experiment 2 (Section 6.2) with different distributions.
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Fig. 14. The second version of experiment 2 (Section 6.2), but for the anonymity axiom (instead of neutrality). Since the WEC
is anonymous by design, this can only be tested for MLP and CNN.

Figure 17 presents a profile where the model differs from all considered rules. Table 8 shows the statistical
robustness of the axiom satisfaction achieved by the model.

D.3 The Experiment with Urn
Table 9 shows the result of the experiment from Section 6.3 but with Urn sampling (instead of IC sampling).
Table 10 shows how similar the best model is to its closest rules. Figure 18 presents a profile where the model
strongly differs (i.e., had non-intersecting winning sets) from its five closest rules. Table 11 shows the statistical
robustness of the axiom satisfaction achieved by the model.
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1 2 3 4 5 6 7

𝑎 𝑏 𝑐 𝑒 𝑏 𝑏 𝑑

𝑒 𝑑 𝑒 𝑐 𝑐 𝑐 𝑒

𝑑 𝑐 𝑎 𝑑 𝑎 𝑎 𝑏

𝑏 𝑎 𝑑 𝑎 𝑑 𝑑 𝑐

𝑐 𝑒 𝑏 𝑏 𝑒 𝑒 𝑎

{𝑏, 𝑐 } neutrality-averaged WEC, with sigmoids (rounded) 𝑎:.38, 𝑏:.54, 𝑐 :.50, 𝑑 :.39, 𝑒 :.39
{𝑏} Plurality, Weak Nanson, Kemeny-Young
{𝑐 } Borda, Copeland, Llull, Blacks, Coombs
{𝑑 } Anti-Plurality, Baldwin
{𝑒 } Instant Runoff TB

{𝑏,𝑑 } Stable Voting
{𝑏, 𝑐,𝑑 } Uncovered Set, Banks
{𝑏, 𝑐, 𝑒 } PluralityWRunoff PUT

{𝑎,𝑏, 𝑐,𝑑, 𝑒 } Top Cycle

Fig. 15. IC sampling: Profile where the ‘WEC n’ model weakly disagrees (i.e. non-identical winning sets) with existing voting
rules.

Table 5. IC sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’ model and its closest
rules.

Anon. Neut. Condorcet Pareto Indep. Avg.

Blacks 100 100 100 100 36.04 87.2
Stable Voting 100 100 100 100 40.48 88.1
Borda 100 100 93.82 100 37.72 86.32
Weak Nanson 100 100 100 100 38.28 87.68
Copeland 100 100 100 100 28.54 85.72
WEC n (NW, C, P) 100 100 96.78 100 45.9 88.54

D.4 The Experiment with Euclidean
Table 12 shows the result of the experiment from Section 6.3 but with Euclidean sampling (instead of IC sampling).
Table 13 shows how similar the best model is to its closest rules. Figure 19 presents a profile where the model
differs from all considered rules. Table 14 shows the statistical robustness of the axiom satisfaction achieved by
the model.

D.5 Ablation Study
Figure 20 displays an ablation study in the choice of axioms to optimize for. For the best performing model, i.e.,
the neutrality-averaged WEC, there remain three axioms that can be optimized for: Condorcet (C), Pareto (P),
and independence (I). The ‘No winner’ loss (NW) is always needed to prevent the model from never outputting
any winner. Which subset of the three axioms is the optimal choice for optimization? In the main text, we chose
C and P. The figure shows that this choice indeed is the best one. Figure 21 shows, for each choice of axiom
optimization, the evolution of the losses during training.
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Table 6. Mallows sampling: Axiom satisfaction of different rules (top part of the table) and models (bottom part of the table).
Otherwise like Table 1 from the main text.

Anon. Neut. Condorcet Pareto Indep. Average

Plurality 100 100 83.0 100 30.2 82.7
Borda 100 100 92.8 100 32.8 85.1
Anti-Plurality 100 100 76.5 100 26.2 80.5
Copeland 100 100 100 100 27.8 85.5
Llull 100 100 100 100 26.2 85.2
Uncovered Set 100 100 100 100 29.5 85.9
Top Cycle 100 100 100 100 25.2 85.0
Banks 100 100 100 100 25.2 85.0
Stable Voting 100 100 100 100 39.0 87.8
Blacks 100 100 100 100 33.8 86.8
Instant Runoff TB 100 100 96.8 100 29.0 85.2
PluralityWRunoff PUT 100 100 94.0 100 27.0 84.2
Coombs 100 100 95.5 100 30.2 85.2
Baldwin 100 100 100 100 39.2 87.9
Weak Nanson 100 100 100 100 33.8 86.8
Kemeny-Young 100 100 100 100 38.2 87.7

MLP p (NW, A, C, P, I) 78.8 76.0 94.0 100 38.8 77.5
MLP n (NW, A, C, P, I) 90.8 100 94.2 100 36.2 84.2
MLP na (NW, A, C, P, I) 92.5 89.5 92.5 100 33.5 81.6
CNN p (NW, A, C, P, I) 80.5 68.8 94.5 100 38.8 76.5
CNN n (NW, A, C, P, I) 91.5 100 95.0 100 42.2 85.8
CNN na (NW, A, C, P, I) 88.0 83.8 94.0 100 36.5 80.5
WEC p (NW, C, P) 100 65.5 91.8 100 37.8 79
WEC n (NW, C, P) 100 100 97.0 100 44.0 88.2

Table 7. Mallows sampling: Similarities between the rules. Computed on 10,000 sampled profiles. Otherwise like Table 2
from the main text.

Identity accuracy WEC n Stable Voting Blacks Borda Weak Nanson Copeland
WEC n 100 89.1 89.4 88.3 87.3 87.2
Stable Voting 100 95.61 91.04 93.47 92.16
Blacks 100 95.43 91.71 90.82
Borda 100 87.14 86.25
Weak Nanson 100 92.08
Copeland 100

Subset accuracy WEC n Stable Voting Blacks Borda Weak Nanson Copeland
WEC n 100 91.7 92.2 92.5 92.1 94.4
Stable Voting 95.8 100 97.09 94.4 97.78 99.49
Blacks 95.8 96.63 100 97.31 95.96 97.97
Borda 94.2 92.06 95.43 100 91.39 93.4
Weak Nanson 92.7 94.5 93.02 90.33 100 97.4
Copeland 91.3 92.23 91.6 88.91 94.17 100
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Fig. 16. The loss evolution during experiment 3. The run times of optimization were as follows: 5h 29min (MLP), 6h 08min
(CNN), 2h 05min (WEC).

Table 8. Mallows sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’ model and its
closest rules.

Anon. Neut. Condorcet Pareto Indep. Avg.

Stable Voting 100 100 100 100 38.14 87.62
Blacks 100 100 100 100 34.04 86.84
Borda 100 100 94.16 100 35.02 85.84
Weak Nanson 100 100 100 100 37.18 87.46
Copeland 100 100 100 100 27.5 85.48
WEC n (NW, C, P) 100 100 94.92 100 41.72 87.34
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Table 9. Urn sampling: Axiom satisfaction of different rules (top part of the table) and models (bottom part of the table).
Otherwise like Table 1 from the main text.

Anon. Neut. Condorcet Pareto Indep. Avg.

Plurality 100 100 84.2 100 24.5 81.8
Borda 100 100 94.8 100 35 85.9
Anti-Plurality 100 100 76.8 100 25 80.3
Copeland 100 100 100 100 28.2 85.6
Llull 100 100 100 100 27.3 85.5
Uncovered Set 100 100 100 100 25.2 85
Top Cycle 100 100 100 100 27.8 85.5
Banks 100 100 100 100 27.5 85.5
Stable Voting 100 100 100 100 38 87.6
Blacks 100 100 100 100 34.2 86.9
Instant Runoff TB 100 100 97 100 28.2 85
PluralityWRunoff PUT 100 100 94.2 100 26.2 84.1
Coombs 100 100 96.5 100 28.5 85
Baldwin 100 100 100 100 39 87.8
Weak Nanson 100 100 100 100 38.5 87.7
Kemeny-Young 100 100 100 100 39.2 87.9

MLP p (NW, A, C, P, I) 79.8 74.2 92.8 100 34.8 76.3
MLP n (NW, A, C, P, I) 91 100 93.8 100 38.8 84.7
MLP na (NW, A, C, P, I) 91.8 91 93.5 100 35 82.2
CNN p (NW, A, C, P, I) 82.8 73.8 94 100 37.8 77.6
CNN n (NW, A, C, P, I) 90 100 94.5 100 34.5 83.8
CNN na (NW, A, C, P, I) 90 91.5 93.2 100 34.5 81.8
WEC p (NW, C, P) 100 75.2 93 100 37.8 81.2
WEC n (NW, C, P) 100 100 93.5 100 39 86.5

Table 10. Urn sampling: Similarities between the rules. Computed on 10,000 sampled profiles. Otherwise like Table 2 from
the main text.

Identity accuracy WEC n Blacks Stable Voting Borda Copeland Weak Nanson

WEC n 100 88.9 88.5 88.2 86.5 86.3
Blacks 100 95.52 95.32 90.92 91.6
Stable Voting 100 90.84 92.17 93.61
Borda 100 86.24 86.92
Copeland 100 92.09
Weak Nanson 100

Subset accuracy WEC n Blacks Stable Voting Borda Copeland Weak Nanson

WEC n 100 92.3 91.4 93.2 94.3 91.3
Blacks 95.1 100 96.44 97.48 98.07 95.4
Stable Voting 94.9 97.03 100 94.51 99.47 97.48
Borda 93.9 95.32 91.76 100 93.39 90.72
Copeland 90.4 91.83 92.19 89.31 100 93.9
Weak Nanson 91.7 93.04 94.65 90.52 97.43 100
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1 2 3 4

𝑐 𝑏 𝑏 𝑐

𝑑 𝑑 𝑑 𝑎

𝑎 𝑎 𝑐 𝑏

𝑏 𝑐 𝑎 𝑑

{𝑏} neutrality-averaged WEC, with sigmoids (rounded) 𝑎:.24, 𝑏:.51, 𝑐 :.49, 𝑑 :.32
{𝑐 } Instant Runoff

{𝑏, 𝑐 } Plurality, Borda, Copeland, Llull, Uncovered Set, Stable Voting, Blacks, PluralityWRunoff PUT,
Baldwin, Weak Nanson, Kemeny-Young

{𝑏, 𝑐,𝑑 } Banks
{𝑎,𝑏, 𝑐,𝑑 } Anti-Plurality, Top Cycle, Coombs

Fig. 17. Mallows sampling: Profile where the ‘WEC n’ model weakly disagrees (i.e. non-identical winning sets) with existing
voting rules.

1 2 3 4 5

𝑏 𝑎 𝑏 𝑑 𝑒

𝑐 𝑐 𝑒 𝑎 𝑐

𝑑 𝑒 𝑑 𝑐 𝑎

𝑒 𝑑 𝑎 𝑏 𝑏

𝑎 𝑏 𝑐 𝑒 𝑑

{𝑏} neutrality-averaged WEC, with sigmoids (rounded) 𝑎:.44, 𝑏:.50, 𝑐 :.48, 𝑑 :.40, 𝑒 :.44
{𝑐 } Blacks, Stable Voting, Borda, Copeland, Weak Nanson, Llull
{𝑏} Plurality, Instant Runoff TB
{𝑎} Baldwin

{𝑎,𝑏} PluralityWRunoff PUT
{𝑎, 𝑐 } Kemeny-Young

{𝑎, 𝑐, 𝑒 } Uncovered Set, Banks
{𝑎,𝑏, 𝑐,𝑑, 𝑒 } Anti-Plurality, Top Cycle, Coombs

Fig. 18. Urn sampling: Profile where the ‘WEC n’ model strongly disagrees (i.e. non-intersecting winning sets) with its 5
closest rules (among the remaining rules it only agrees with Plurality and Instant Runoff TB).

Table 11. Urn sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’ model and its closest
rules.

Anon. Neut. Condorcet Pareto Indep. Avg.

Blacks 100 100 100 100 34.38 86.9
Stable Voting 100 100 100 100 39.2 87.84
Borda 100 100 93.46 100 35.66 85.84
Copeland 100 100 100 100 26.9 85.38
Weak Nanson 100 100 100 100 37.82 87.54
WEC n (NW, C, P) 100 100 95.68 100 38.16 86.76
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Table 12. Euclidean sampling: Axiom satisfaction of different rules (top part of the table) and models (bottom part of the
table). Otherwise like Table 1 from the main text.

Anon. Neut. Condorcet Pareto Indep. Avg.

Plurality 100 100 79.8 100 25.5 81
Borda 100 100 93.8 100 37.2 86.2
Anti-Plurality 100 100 77.2 100 25 80.5
Copeland 100 100 100 100 29.5 85.9
Llull 100 100 100 100 29.8 86
Uncovered Set 100 100 100 100 26.2 85.2
Top Cycle 100 100 100 100 28.7 85.8
Banks 100 100 100 100 28 85.6
Stable Voting 100 100 100 100 39.5 87.9
Blacks 100 100 100 100 37 87.4
Instant Runoff TB 100 100 96.8 100 30 85.4
PluralityWRunoff PUT 100 100 94.8 100 26.5 84.2
Coombs 100 100 96 100 26.2 84.5
Baldwin 100 100 100 100 40.2 88
Weak Nanson 100 100 100 100 40 88
Kemeny-Young 100 100 100 100 36.5 87.3

MLP p (NW, A, C, P, I) 79.2 78 92.2 100 36 77.1
MLP n (NW, A, C, P, I) 87.2 100 93.8 100 36.2 83.5
MLP na (NW, A, C, P, I) 90.5 91.5 93.5 100 31.8 81.5
CNN p (NW, A, C, P, I) 83.2 74.5 93.2 100 35 77.2
CNN n (NW, A, C, P, I) 89.8 100 92 100 34.8 83.3
CNN na (NW, A, C, P, I) 86 90.2 92.8 100 30.5 79.9
WEC p (NW, C, P) 100 75 96.8 100 38.5 82
WEC n (NW, C, P) 100 100 97.8 100 42.2 88

Table 13. Euclidean sampling: Similarities between the rules. Computed on 10,000 sampled profiles. Otherwise like Table 2
from the main text.

Identity accuracy WEC n Stable Voting Blacks Weak Nanson Copeland Borda
WEC n 100 92.2 91.5 89.5 88.7 89.1
Stable Voting 100 95.65 93.22 92.24 91.05
Blacks 100 91.37 90.85 95.4
Weak Nanson 100 92.46 86.77
Copeland 100 86.25
Borda 100

Subset accuracy WEC n Stable Voting Blacks Weak Nanson Copeland Borda

WEC n 100 94.9 94.5 94.6 96.7 93.9
Stable Voting 95.6 100 97.19 97.5 99.58 94.57
Blacks 94.7 96.69 100 95.61 97.92 97.38
Weak Nanson 92 94.24 92.82 100 97.53 90.2
Copeland 90.8 92.3 91.67 94.39 100 89.05
Borda 92.1 92.09 95.4 91.01 93.32 100
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1 2

𝑑 𝑏

𝑎 𝑒

𝑐 𝑎

𝑏 𝑐

𝑒 𝑑

{𝑏} neutrality-averaged WEC, with sigmoids (rounded) 𝑎:.34, 𝑏:.50, 𝑐 :.13, 𝑑 :.30, 𝑒 :.13
{𝑎} Coombs
{𝑑 } Instant Runoff TB

{𝑎,𝑏} Weak Nanson
{𝑏,𝑑 } Plurality, PluralityWRunoff PUT
{𝑎,𝑏} Borda, Copeland, Stable Voting, Blacks

{𝑎,𝑏,𝑑 } Llull, Uncovered Set, Banks, Baldwin, Kemeny-Young
{𝑎,𝑏, 𝑐 } Anti-Plurality

{𝑎,𝑏, 𝑐,𝑑, 𝑒 } Top Cycle

Fig. 19. Euclidean sampling: Profile where the ‘WEC n’ model weakly disagrees (i.e. non-identical winning sets) with existing
voting rules.

Table 14. Euclidean sampling: Take the average over 5 runs of checking the axiom satisfaction of the ‘WEC n’ model and its
closest rules.

Anon. Neut. Condorcet Pareto Indep. Avg.

Stable Voting 100 100 100 100 39.12 87.8
Blacks 100 100 100 100 34.98 86.98
Weak Nanson 100 100 100 100 39.32 87.86
Copeland 100 100 100 100 27.68 85.54
Borda 100 100 95.08 100 35.46 86.08
WEC n (NW, C, P) 100 100 97.74 100 45.16 88.58
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Fig. 20. Ablation study in axiom optimization with the neutrality-averaged WEC. For each possible (nonempty) choice of
axioms to optimize for among Condorcet (C), Pareto (P), and independence (I), the achieved axiom satisfaction is shown.
The ‘No winner’ loss (NW) is always optimized for. Its reported satisfaction is 0 if the model always outputs at least one
winner. The axioms of anonymity and neutrality are not shown since they are satisfied by design. The black squares in the
independence satisfaction indicate that the axiom was applicable on too few of the sampled test profiles to warrant an
estimate. The best choice is C, P since it has the highest axiom satisfaction combined with a low ‘No winner’ satisfaction.
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Fig. 21. The evolution of the losses during axiom optimization with the neutrality-averaged WEC, for each choice of which
axioms to optimize among Condorcet (C), Pareto (P), and independence (I), with ‘no winner’ (NW) always being optimized
for. The loss curves for the NW+I-optimization are not shown, since they are so close to 0 that they are indistinguishable
from the x-axis. In the other two cases that did not yield good axiom satisfaction—i.e., P and P, I in Figure 20—, the loss
evolution also shows no convergence.
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