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Abstract Can neural networks be applied in voting theory, while
satisfying the need for transparency in collective decisions? We pro-
pose axiomatic deep voting: a framework to build and evaluate neural
networks that aggregate preferences, using the well-established ax-
iomatic method of voting theory. Our findings are: (1) Neural net-
works, despite being highly accurate, often fail to align with the core
axioms of voting rules, revealing a disconnect between mimicking
outcomes and reasoning. (2) Training with axiom-specific data does
not enhance alignment with those axioms. (3) By solely optimizing
axiom satisfaction, neural networks can synthesize new voting rules
that often surpass and substantially differ from existing ones. This of-
fers insights for both fields: For AI, important concepts like bias and
value-alignment are studied in a mathematically rigorous way; for
voting theory, new areas of the space of voting rules are explored.*

Keywords Computational social choice, machine learning, neural
networks, voting theory, axiomatic method, semantic loss function,
data augmentation.

1. Introduction

Artificial intelligence (AI) is increasingly applied in many domains,
including not just scientific and technological but also societal do-
mains. This poses a dilemma when it comes to social choice, i.e.,
voting, preference aggregation, and other processes of collective de-
cisions. On the one hand voting systems should be transparent, but
the neural networks on which modern AI is built are notoriously
opaque. On the other hand neural networks could unearth novel and
tailor-made collective decision procedures. Already, state-of-the-art
techniques for alignment of Large Language Models (LLMs) with
human values—like RLHF (Bai et al., 2022) or DPO (Rafailov et al.,
2024)—rely on the aggregation of human preferences about the gen-
erated outputs to fine-tune LLMs. This triggered recent research in
guiding such AI alignment using social choice (Conitzer et al., 2024).

In this paper, we study how neural networks aggregate votes and
preferences. When they form such collective decisions, do they ad-
here to the normative principles that social choice theory formulated
as axioms? This is fundamental both for a discussion of the dilemma
and for using social choice for AI alignment. Moreover, it offers
new insights for both AI and voting theory. For AI, this provides
a rich testing ground to study pressing machine learning concepts
like bias, value-alignment and interpretability in a mathematically
rigorous way. For example, a network is not biased towards spe-
cific individuals if it aggregates their preferences in accordance with
the axiom of anonymity; the so-called Pareto principle requires the
neural network to align with any preference shared among all indi-
viduals; and the well-known axiom of independence entails a certain
compositional interpretability of the network. For voting theory,
axiomatic deep voting provides a new method for the central quest
of exploring the space of voting rules.

*The source code will eventually be made available here: https://github.com/
LevinHornischer/AxiomaticDeepVoting.

Figure 1: Can neural networks learn to vote with principles?

Social choice. How are individual preferences best turned into a
collective decision? This question is studied by social choice theory
(Brandt et al., 2016; List, 2022) and, specifically, voting theory (Zwicker,
2016). A voting rule is a function that takes as input a profile—i.e., a list
of each individual’s preferences among a given set of alternatives—
and produces as output a collective decision, i.e., the alternative(s) that
the rule takes to be most preferred for the group as a whole (see
Section 3 for the formal definitions). The most straightforward rule
is Plurality (which picks the alternative that is considered best by
the most individuals); other classic rules include Borda and Copeland,
while a more recent suggestion is Split Cylce.

Axiomatic deep voting. To study the collective choices of neural
networks, we develop the axiomatic deep voting framework (sketched
in Figure 1). Deep neural networks are (parametrized) functions that
map vectors (typically of a high dimension) to vectors (typically of a
low dimension). So, after suitably encoding profiles and collective de-
cisions as vectors, neural networks realize voting rules, i.e., functions
from profiles to collective decisions. Discovering a voting rule can
then be seen as an optimization problem: updating the neural network
parameters until a given desired property is fulfilled. We evaluate a
trained neural network in terms of accuracy and axiom satisfaction.
While the former is standard in machine learning, the latter is spe-
cific to voting theory and its axiomatic method (Thomson, 2001; List,
2011). Different axioms describe different desirable properties of
voting rules. An example is the already mentioned anonymity axiom
which requires that the names of the voters should not influence the
collective decision.

Research questions. With this framework, we investigate three
specific questions.
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(1) Correct for the right reasons? Neural networks can accurately
learn standard voting rules, but do they adhere to the normative
principles expressed by voting-theoretic axioms?

We observe eminent violations of the axioms, despite high accuracy
in mimicking voting rules. So we focus on teaching neural networks
the expert knowledge expressed by axioms. There are two common
ways to do this. The first is via dataset augmentation (Xia, 2013):

(2) Learning principles by example? Can neural networks be trained
to adhere to voting-theoretic axioms by training with data ex-
emplifying the axioms?

The second way is via semantic loss functions (Xu et al., 2018). For
this, we develop a translation of the axioms into loss functions; so,
by optimizing this loss during training, the network increases the
corresponding axiom satisfaction. Importantly, though, perfect ax-
iom satisfaction is impossible according to the infamous theorem by
Arrow (1951). So we search for the best possible axiom satisfaction:

(3) Rule synthesis guided by principles? When neural networks opti-
mize axiom satisfaction, can they develop new voting rules that
surpass existing ones?

We compare the discovered rules to a wide range of known voting
rules, to test if neural networks can advance the current state of the
art in voting theory.

Key findings. We test three paradigmatic neural network archi-
tectures: multi-layer perceptrons, convolutional neural networks,
and word embedding based classifiers. We also check four standard
distributions of voter preferences. We find the following:

(1) Our employed architectures demonstrate similar behavior both
regarding accuracy and axiom satisfaction. Importantly, de-
spite high accuracy, they markedly violate critical axioms like
anonymity—yet, the news is not as bad for other axioms.

(2) Data augmentation does not seem to boost the principled learn-
ing of neural networks. However, it drastically decreases the
amount of required training data.

(3) Neural networks that perform the unsupervised learning task
of optimizing axiom satisfaction discover voting rules that are
substantially different from existing ones and are comparable—
and often better—in axiom satisfaction.

Thus, we fruitfully combine two approaches to studying the space of
voting rules: Drawing on machine learning, we use neural networks
qua universal function approximators to explore that space; and draw-
ing on voting theory, we evaluate points in that space—i.e., voting
rules—by their axiom satisfaction, thus guiding the exploration.

2. Related Work

We identify three main streams of relevant literature.

2.1. Axiomatic Evaluation of Voting Rules

Social choice theory has extensively quantified the axiom satisfaction
of various voting rules, with a significant focus on the concept of
manipulability, i.e., the propensity of voters to be untruthful in order
to sway the outcome in their favor (Favardin et al., 2002; Favardin
and Lepelley, 2006; Nitzan, 1985). Numerous studies (Fishburn and
Gehrlein, 1982; Merrill, 1984; Nurmi, 1988) examine how often voting
rules elect the Condorcet winner (that is, the alternative representing a
majoritarian consensus) for relatively small elections all having the
same probability of materializing (that is, assuming the Impartial
Culture distribution). In line with our findings, the Borda rule is
found to elect the Condorcet winner more often than the Plurality

rule (Nurmi, 1988). When considering the axiom of independence—
the main trigger of Arrow’s impossibility theorem—the Borda rule
fulfills it more frequently than Copeland, which in turn satisfies
it more than Plurality (Dougherty and Heckelman, 2020). For the
special case of 3 voters and 3 alternatives, an anonymous voting rule
satisfies independence between 1.3% and 25.5% of the time (Powers,
2007).

Overall, our work aligns with the traditional concept of evaluating
voting rules based on axioms. However, we also consider learning
voting rules and not just evaluating existing ones.

2.2. Neural Networks and Voting

The synergy between voting and machine learning has recently gar-
nered more and more attention. Kujawska et al. (2020) use, among
others, multi-layer perceptrons (MLPs) on elections of 20 alternatives
and 25 voters to predict the winners of different voting rules. The
study’s primary aim is to identify an effective computational tech-
nique on top of the classical ones of the voting literature. The authors
find that the Borda rule is predicted by the neural networks with high
accuracy (up to 99%), but more complex rules are predicted with
lower accuracy (up to 85% for Kemeny and 89% for Dodgson). Burka
et al. (2022) employ MLPs to investigate the relation between sample
size and accuracy when learning different voting rules, including
Plurality, Borda, and Copeland. In that work, up to 3000 data points
are used based on the Impartial Culture assumption, with at most 5
alternatives and 11 voters. The MLP is found to mimic more closely
Borda, no matter on which rule it is trained: e.g., for 3 alternatives
and 7 voters, trained on Plurality, the MLP mimiced Borda with 95%
accuracy and Plurality with 86% accuracy. However, the size of the
training data exhibits an impact on the results: e.g., when trained
on elections with a Condorcet winner, the MLP mimics more closely
Borda in sample-size up to 1000, and Copeland in larger samples.
Increasing the size of the MLP by adding layers does not seem im-
portant. Anil and Bao (2021) study more complex neural network
architectures (such as Set Transformers and DeepSets), improving the
accuracy of MLPs by up to 4% in learning Plurality and Copeland.
With sufficiently many data points, those networks are shown to
match almost perfectly each voting rule, and to also generalize to
elections with an unseen number of voters.

Similarly to all these works, our first experiment considers pre-
cisely the problem of using neural networks to learn existing rules
from voting theory. However, we systematically study this with ax-
ioms: instead of only targeting the right outcomes, we test whether
they are obtained via the right principles.

In an initial exploration towards the same direction, Armstrong
and Larson (2019) use a single axiom—prescribing the election of a
Condorcet winner when one exists—to train normatively appealing
neural networks. This work relies on real data from Canadian federal
elections, while ours builds on extensive synthetic data. Additionally,
our third experiment illustrates original interactions between sets
of different axioms that have not been explored in the literature yet.
However, one of the more intricate voting principles not tackled in
our paper is fairness. After observing a theoretical trade-off between
fairness and certain notions of economic efficiency (some related
to the Condorcet winner), Mohsin et al. (2022) train two machine
learning models on synthetic data and discover new voting rules
that compete well against both Plurality and Borda. Although rule
synthesis and axiomatic analysis is not a main focus of that work,
the obtained results enforce the idea that machine learning methods
can beat existing ones from economic theory when optimized for
principled learning.

Other promising lines of research target learning an abstract vot-
ing rule given examples about its choices (Procaccia et al., 2009) and
designing a voting rule that maximizes some notion of social wel-
fare (Anil and Bao, 2021). Holliday et al. (2024) explore the strategic
manipulation of voting rules by MLPs of different sizes, generat-
ing elections of up to 6 alternatives and 21 voters. They find that
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Figure 2: A voting profile, with voters N = {1, . . . , 6} and alterna-
tives A = {a,b,c,d}. Each column depicts the preference
of the individual voter; e.g., voter 1 prefers alternative c

most, followed by alternative a, etc.

sufficiently large MLPs learn to profitably manipulate all examined
voting rules only with information about the pairwise majority victo-
ries between alternatives. But some rules like Split Cycle seem more
resistant than other rules (e.g., Plurality and Borda).

A different approach, rather orthogonal to ours, is to consider
AI models as the individuals who vote, instead of using them as
the aggregation mechanisms. In this vein, Yang et al. (2024) con-
sider a human voting experiment with 180 participants to establish
a baseline for human preferences and conducted a corresponding
experiment with LLM (e.g., GPT-4) agents. The voting behavior
of the networks seems to be affected by the presentation order of
the alternatives, as well as the numerical ID assigned to each LLM
representing a voter. Some voting rules such as Borda show that
LLMs may lead to less diverse collective outcomes. Importantly
GPT-4 seems to over-rely on stereotypical demographics of the vot-
ers it is supposed to mimic. Similarly, using data from Brazil’s 2022
presidential election, Gudiño Rosero et al. (2024) tests the accuracy
with which LLMs predict an individual’s vote. They find that LLMs
are more accurate than a naive rule guessing that individuals sim-
ply vote for the proposals of the candidate most aligned with their
political orientation.

2.3. Social Choice for AI Alignment

A growing research area studies how social choice theory can be
used to guide the alignment of modern AI methods with human
values and moral judgments. Conitzer et al. (2024) highlight a series
of technical connections—for example, the alternatives in a voting
context could be treated as all possible parameterizations of a net-
work, or as all its possible answers. As an indication, in a popular
work about a controversial topic, Noothigattu et al. (2018) use data
from the online ‘moral machine experiment’ to build a model of
aggregated moral preferences aimed at guiding the decision making
of autonomous vehicles. On a more theoretical level, Mishra (2023)
utilize Arrow’s theorem to prove that there does not exist any AI
system that can treat all its users and human supervisors equally. We
do not directly engage with the ethical dimension of this research
area; still, we participate in the related foundational discussion by
studying whether neural networks can learn to vote with principles.

3. Preliminaries on Voting Theory

We work in the standard setting of voting theory, where a finite
set N of voters N have preferences, which are linear orders (also
called rankings) over a finite set A of alternatives (Zwicker, 2016).
Set m := |A| and n := |N|. We denote by P = (P1, ...,Pn) a
preference profile, i.e., a vector with the preference Pi for every voter
i ∈ N. This is illustrated in Figure 2.

For a permutation of the alternatives σ : A → A, the rank-
ing σ(P) is obtained by applying σ elementwise to the ranking
P, and σ(P) = (σ(P1), . . . ,σ(Pn)). For a permutation of the vot-
ers π : N → N, we define π(P) = (Pπ(1), ...,Pπ(n)). A voting rule
is a function F that determines the winning alternatives for each such
profile. Formally, F : P 7→ S, where ∅ ̸= S ⊆ A.1

1We use the Python package pref-voting in all our experiments.

3.1. Voting Rules

Voting rules usually fit into one of two categories: scoring rules and
tournament solutions. Scoring rules assign a score to each alternative
depending on its position in the linear preference of each voter and
declare as winners those alternatives with the highest score across all
voters. The two primary scoring rules are Plurality (assigning score 1
to an alternative each time it is ranked first by a voter, and score 0
otherwise) and Borda (assigning score m−1 to an alternative ranked
first by a voter, score m− 2 to an alternative ranked second, and so
on, until score 0 is assigned to an alternative ranked last by a voter).2

Tournament solutions on the other hand are based on tournaments
that capture pairwise comparisons between the alternatives, in-
duced by the voters’ preferences. For x,y ∈ A, let NP

x≻y be
the set of voters i in the profile P that consider x better than y

in Pi, and nP
x≻y := |NP

x≻y|. A characteristic tournament solu-
tion is the Copeland rule, which selects as winners the alternatives
that beat the most other alternatives in a pairwise majority contest:
argmaxx∈A|{y ∈ A : nP

x≻y ⩾ nP
y≻x}|. The weighted tourna-

ment of a profile is a weighted directed graph the nodes of which
are alternatives with an edge from x to y of weight nP

x≻y. Suppose
that in each cycle of the graph, we simultaneously delete the edges
with minimal weight. Then the alternatives with no incoming edges
are the winners of Split Cycle (Holliday and Pacuit, 2023a). If there
is only one Split Cycle winner in a profile P, then this also is the
winner of Stable Voting; otherwise x is a winner of Stable Voting if
for some alternative y it holds that x is a Split Cycle winner with the
maximal margin nP

x≻y such that x is a Stable Voting winner in the
profile P−y obtained from P after deleting alternative y (Holliday
and Pacuit, 2023b).

Two prominent rules that do not fit into the two above categories
are Blacks and Weak Nanson. Black returns the Condorcet winner (i.e.,
the alternative beating every other alternative in a pairwise strict
majority contest) if one exists, otherwise it returns the Borda winners.
Weak Nanson is defined iteratively on voting profiles of various
sizes. In each round, all alternatives with Borda score at most as high
as the average Borda score are removed. Whenever all alternatives
have the same Borda score, they all win; otherwise the alternative
that remains in the last round wins. In our third experiment, we use
even more common voting rules for detailed comparisons, though
they are not essential to the paper; hence we refer to the introductory
chapter of Zwicker (2016) and to the pref-voting documentation
for the relevant definitions.

3.2. Axioms

We define axioms as functions that map a voting rule and a preference
profile to a value in {−1, 1, 0}, where 0 means that the axiom is not
applicable, −1 means that the desideratum is violated, and 1 that it is
satisfied. The satisfaction degree of an axiom is the ratio of the number
of sampled profiles in which the axiom is satisfied to the number of
sampled profiles in which it is applicable. We focus on axioms that
capture basic and diverse normative properties of a voting rule F.

• Anonymity is always applicable; it is satisfied in P if for all
permutations of voters π : N → N, F(π(P)) = F(P). In
words, the winners should be invariant under permutations of
the voters.

• Neutrality is always applicable; it is satisfied in P if for all per-
mutations of alternatives σ : A → A, F(σ(P)) = σ(F(P)).
In words, under permutations of the alternatives, the winners
should be permuted respectively.

• Condorcet principle is applicable in P if some x ∈ A is such that
nP

x≻y > n/2 for all y ∈ A \ {x}; it is satisfied if F(P) = {x}.
In words, if a Condorcet winner exists, then it should be the
unique winner of the voting rule.

2Plurality and Borda are often contrasted in voting (Hatzivelkos, 2018; Terzopoulou, 2023).

3

https://pref-voting.readthedocs.io


• Pareto principle is applicable in P if there exist two alternatives
x,y ∈ A such that nP

x≻y = n; it is satisfied if y /∈ F(P). In
words, if an alternative is considered inferior to a certain other
alternative by all voters, then it should not win.

• Independence is applicable in P if F(P) ̸= A; it is satisfied if for
all x ∈ F(P), y /∈ F(P), and P′ such that NP

x≻y = NP′
x≻y, it

holds that y /∈ F(P′). In words, if the relative ranking between
a winning alternative and a losing alternative remains the same
for all voters, then the losing alternative should not win.

All voting rules defined above satisfy anonymity and neutrality,
as well as the Pareto principle, for all preference profiles. They all
violate independence for some preference profile. Copeland, Split
Cycle, Stable voting, Blacks rule and Weak Nanson always satisfy
the Condorcet principle.

3.3. Distributions of Preference Profiles

Specifying the distribution of preference data is essential to study-
ing the voting behavior of a society. To ensure that our results are
independent of the specific choice of the distribution, we employ
four different ones. (For a detailed comparison of the various voting
distributions, see Boehmer et al. (2024).)

Impartial Culture (IC) assumes that all preference profiles have
the same probability of appearing. Each preference of a voter in a
profile is sampled uniformly at random. The Mallows distribution
(Mallows, 1957) fixes a reference ranking P and assumes that each
voter’s preference is close to that ranking. Closeness to the reference
ranking is defined using the Kendall-tau distance, parameterized by
a dispersion parameter ϕ ∈ (0, 1]. This distribution reduces to IC
when ϕ = 1 and concentrates all mass on P as ϕ tends to 0.

The IC and Mallows distributions are complementary: IC is sim-
plistic and widely employed in theoretical works on voting rules; it
captures an extreme case with no correlation between preferences of
voters. Mallows is often employed in numerical studies of voting
rules that use artificial data but wish to capture more realistic voting
scenarios (Caragiannis and Micha, 2017; Lee et al., 2014).

The next two distributions also capture more intricate relationships
between the preferences in a profile. According to the 2D-Euclidean
distribution, voters and alternatives are distributed randomly in 2-
dimensional Euclidean space, and the closer an alternative is to a
voter the more the voter prefers that alternative. Finally, the Urn
distribution (Eggenberger and Pólya, 1923) generates a profile given
a parameter α ∈ [0,∞). Voters randomly draw their ranking from
an urn. Initially, the urn includes all possible rankings over the
alternatives. After a voter randomly draws from the urn, we add to
the urn αn! copies of that ranking. When α = 0, this reduces to IC.

4. Method

To answer our research questions, we develop the axiomatic deep
voting framework, visualized in Figure 3. It is built around a neural
network, which is a function fw : Ri → Rj parametrized by wights
w ∈ Rk. We will instantiate this with three different neural network
architectures (see Section 4.1). Every profile P is mapped, via an
encoding function e (see Section 4.2), to a vector x = e(P) ∈ Ri,
for which the neural network produces an output ŷ ∈ Rj.3 The
decoding function d (see Section 4.3) turns this output into a winning
set S = d(ŷ). Thus, this setup realizes the voting rule:

Fw

(
P
)
:= d

(
fw

(
e(P)

))
.

The network is trained, as usual, using backpropagation with respect
to a loss function (in Section 4.4), which relies on training data. Finally,
we evaluate (in Section 4.5) the trained network not only with respect

3For our third architecture, the encoding function is part of the neural network, while for
the first two it is independent (see Section 4.2); hence we treat e as a separate entity here.

to its accuracy (how well it fits the test dataset), but, crucially, also
by how much it satisfies the various voting axioms.

4.1. Architectures

We use three paradigmatic neural network architectures from mod-
ern machine learning.

First, multi-layer perceptrons (MLPs)—also known as feed-forward
neural network—are the classic deep neural net (see, e.g., Goodfellow
et al., 2016, ch. 6). They consist of an input layer of neurons, one or
more hidden layers, and an output layer.

Second, convolutional neural networks (CNNs) are a standard ar-
chitecture to process grid-like input data such as images (see, e.g.,
Goodfellow et al., 2016, ch. 9), and in our case profiles. Compared
to MLPs, they additionally use so-called convolutional layers to to
capture local, invariant patterns in the input.

Third, we device an architecture that satisfies the anonymity ax-
iom by design: We view profiles as sentences whose words are the
rankings. We use the word embedding algorithm Word2vec (Mikolov
et al., 2013) to map each ranking to a high-dimensional embedding
vector. These vectors are averaged—hence we get anonymity—and
an MLP then classifies this average into a winning set. This combined
architecture we call here word embedding classifiers (WECs).

4.2. Encoding

To ensure our neural networks learn general patterns, we do not
work with a fixed number of voters and alternatives, but only with a
maximal number of voters nmax and a maximal number of alterna-
tives mmax. So the model should allow as input any profile P over
the set of voters N = {0, . . . ,n− 1} with n ⩽ nmax and set of alter-
natives M = {0, . . . ,m− 1} with m ⩽ mmax. (For readability, we
also write a,b,c, . . . for the alternatives.) We write as

r for the r-th
most preferred alternative of voter s, so the profile P is represented
as the matrix (as

r)r,s, whose columns are the rankings as in Figure 2.
We write P̃ = (ãs

r)r,s for the result of padding the m×n matrix P

with the symbol ∼ to the maximal input dimensions mmax ×nmax.
(So ãs

r is as
r if r ⩽ m and s ⩽ n, and otherwise it is ∼.)

How should we encode P̃ so it can be inputted to a neural net-
work? The most straightforward way is to read each alternative
as
r ∈ M as the number that it is and the padding symbol ∼ as,

say, −1. Then the matrix P̃ is regarded as a vector of dimension
mmaxnmax. However, this does not perform well, so, following Anil
and Bao (2021), we represent an alternative not as a number but
as a one-hot vector. For a ∈ {0, . . . ,mmax − 1}, let a be the vector
of length mmax that is 1 at position a and 0 everywhere else. For
the padding symbol, let ∼ be the vector of length mmax that is 0
everywhere. We write P = (ãs

r)r,s.
The encoding function for MLPs, eMLP, maps profile P to the vector

x obtained by casting the matrix P column by column into a flattened
vector (of dimension m2

maxnmax). This vector x can then be inputted
into the MLP.

The encoding function for CNNs regards the matrix P as a pixel im-
age: the ‘pixel’ at position (r,s) has the ‘color value’ ãs

r . Thus, eCNN
maps profile P to the matrix P recast as a tensor with dimensions
(channel, height, width) = (mmax,mmax,nmax). This tensor can then
be inputted into the CNN.

The encoding function for WECs regards the profile P =
(P1, . . . ,Pn) as a sentence with words Pi. We train it to embed
these words into vectors of a fixed high dimension. Thus, unlike
the previous encoding functions, this one is not separate from the
neural network but rather forms the first layer of the WEC, with
the remaining layers processing the embedding vectors. More pre-
cisely, we first pre-train the embeddings as follows. For a given
corpus size c, we sample c-many profiles from a given distribution
of profiles (e.g., IC) to form our corpus (i.e., a set of sentences). The
rankings occurring in the profiles form the vocabulary of this corpus,
to which we add the unk token (to later represent unknown rankings,
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Figure 3: The axiomatic deep voting architecture.

i.e., rankings that are not in the vocabulary) and the pad token (to
pad a profile to length nmax). Using Word2vec, we train embeddings
which represent words in the vocabulary as vectors. When instanti-
ating the WEC architecture, these embeddings form the first layer:
it maps the profile (P1, . . . ,Pn) to the corresponding embedding
vectors (v1, . . . ,vn). The next layer averages these vectors into a
single vector v, followed by several linear layers ending with the
output layer.

4.3. Decoding

Given a profile P as input, all neural network architectures produce
as output the logits ŷ = (ŷ0, . . . , ŷmmax) in Rmmax . We apply the
sigmoid function σ elementwise to obtain the probability that alter-
native r is in the winning set. With m the number of alternatives in
profile P, we define the decoding function

dm(ŷ) :=
{
r ∈ {0, . . . ,m} : σ(ŷr) > 0.5

}
.4

In experiment 3, we will consider further versions of this decoding
function (see Section 6.3).

4.4. Loss Functions

Since multiple alternatives can win, we cast the task of finding a
voting rule as a multi-label classification problem. Each input profile
P is associated with m binary labels (where m is the number of
alternatives in P), and the r-th label is 1 if and only if the r-th
alternative is in the winning set associated with P. Hence we use
binary cross entropy as loss function.

For each axiom, we also design a loss function that enforces sat-
isfaction of that axiom. Concretely, for the anonymity axiom, this
is done as follows. Given the network fw and profile P, uniformly
sample N-many permutations π1, . . . ,πN of the set of voters of P
and define

LA(fw,P) :=
1
N

N∑
r=1

KL
(
fw

(
e(P)

)
, fw

(
e(πr(P))

))
,

where KL is Kullback–Leibler divergence. For the other axioms, we
proceed similarly (see Appendix A, where we also discuss differen-
tiability).

4.5. Evaluation Metrics

We have two ways of evaluating the model: accuracy and axioms.
First, we calculate the accuracy of the trained neural network on a

4A priori, it can happen that the neural network does not assign any winner, in contrast to
our definition of a voting rule. We check (and train) that this happens, if at all, only with
a negligible probability.

given test set in two ways: Identity (or hard) accuracy is the percentage
of pairs (P,S) in the test set for which Fw(P) = S. Subset (or soft)
accuracy is defined in the same way but replacing the identity with
Fw(P) ⊆ S. Second, we calculate the satisfaction degrees for the
various axioms of the voting rule Fw that the trained neural network
realizes (see Section 5.3 for the details).

5. Experimental Setup

5.1. Voting-Theoretic Parameters

We work with nmax = 77 and mmax = 7 and all four profile distribu-
tions in the first experiment and with nmax = 55 and mmax = 5 and
with IC and Mallows in the other experiments. The first experiment
does not show a qualitative difference between these settings, but
the latter is computationally more efficient.

We use the Mallows distribution with a parameter rel-ϕ (randomly
generated) that, together with the number of alternatives, determines
the value of the dispersion parameter ϕ. According to Boehmer et al.
(2021) and Boehmer et al. (2023), this methodology generates data
that resemble more closely those of real elections. We use the Urn-R
distribution (Boehmer et al., 2021), where, for each generated profile,
α is chosen according to a Gamma distribution with shape parameter
k = 0.8 and scale parameter θ = 1. The other distributions do not
need further parameters.

5.2. Synthetic Data Generation

We can sample profiles in a controlled and realistic manner and pro-
duce their corresponding winning sets with existing voting rules (see
Section 3). So we generate synthetic data: Given a profile distribu-
tion µ and a voting rule F, we randomly pick integers n ∈ [1,nmax]
and m ∈ [1,mmax] and µ-sample a profile P with n voters and m

alternatives and compute S = F(P). Thus, we generate a dataset
D =

{
(P1,S1), . . . , (Pk,Sk)

}
.

5.3. Evaluating Axiom Satisfaction

To evaluate the axiom satisfaction of a voting rule (be it realized
by a neural network or an existing one), we sample 400 profiles on
which the axioms are applicable. We use the same profile distribu-
tion µ as was used for training the neural network, and we again
randomly choose integers n ∈ [1,nmax] and m ∈ [1,mmax] before
µ-sampling a profile with n voters and m alternatives. To compute
whether an axiom is satisfied for a profile, the axioms of anonymity,
neutrality, and independence require sampling of permutations. We
sample, per profile, 50, 50, and 4n (with n the number of voters in
the considered profile) permutations, respectively.5

5Independence requires both a permutation of voters and of alternatives, hence we sample
more permuted versions of the given profile.
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5.4. Hyperparameters

All models use ReLU as activation function. Our MLP has three
hidden layers with 128 neurons each. The CNN has two convolu-
tion layers with kernel size (5, 1) and (1, 5), respectively (and 32
or 64 channels), followed by three linear layers with 128 neurons.
The WEC has the word embedding layer, then the averaging layer,
and then three linear layers with 128 neurons. For pre-training the
embedding layer with word2vec, we use a corpus size of 105, an
embedding dimension of 200, and a window size of 7.6 This results
in the following numbers of parameters in the setting nmax = 77
and mmax = 7: the MLP has 500.487 parameters, the CNN has
1.834.439 parameters, and the WEC has 1.226.143 parameters. Thus,
the models are roughly comparable in size.

For training, we use the AdamW algorithm (Loshchilov and Hutter,
2019). We use a batch size of 200. Since we have synthetic data, we
do not use epochs and hence only specify the number of gradient
steps. In experiment 1, 2, and 3, these are 15.000, 5.000, and 15.000,
respectively. Similar to Anil and Bao (2021), we use as a learning
rate scheduler cosine annealing with warm restarts (Loshchilov and
Hutter, 2017). All results are reported for one fixed seed. (In the
Appendix, tables 4 and 5 report averaged results across different
seeds.) All experiments have been run on a laptop without GPU.

6. Results and Analysis

Within our axiomatic deep voting framework, we answer our three
research questions: (1) Are preferences-aggregating neural networks
correct for the right reasons? No. (2) Can they learn voting-theoretic
principles by example? No. (3) Can they synthesize new rules guided
by the principles? Yes.

6.1. Correct for the Right Reasons?

Recent work in computer science has studied the capabilities of
neural networks to learn voting rules (Anil and Bao, 2021; Burka
et al., 2022), but without asking whether “the system performs well
for the right reasons” (Bender and Koller, 2020, p. 5192). Here we
use voting-theoretic axioms to shed light on the learning behavior of
neural networks, specifically aiming to distinguish solely accurate
versus principled learning.

Design. We train each one of the three neural network architectures
(MLP, CNN, and WEC) on data from each one of the three basic
voting rules (Plurality, Borda, and Copeland) using four different
sampling distributions (IC, Urn, Mallows, and Euclidean). We report
the results as relative accuracy and axiom satisfaction, i.e.,

⟨relative evaluation⟩ = ⟨rule evaluation⟩− ⟨model evaluation⟩.

For example, if the model has 95% identity accuracy, then, since
the rule trivially has 100% accuracy, the relative identity accuracy is
100% − 95% = 5% (i.e., the error). If the model has 35% satisfaction
of the independence axiom and the rule only 30%, then the relative
independence satisfaction is 30% − 35% = −5%.

Results. The relative accuracy and axiom satisfaction when sam-
pling with the IC distribution are given in Figure 4. (Section B in
the Appendix shows similar results for the other distributions.) The
three architectures do not differ much in accuracy. The best accuracy
is achieved for the simple Plurality rule, while the complex Copeland
rule decreases accuracy.

Notably, across all voting rules, architectures, and distributions,
we see large violations of neutrality despite high accuracy (e.g., 4.6%
identity-accuracy error for the WEC architecture when trained on

6That is in the setting nmax = 77 and mmax = 7. When nmax = 55 and mmax = 5, we
reduce this to a corpus size of 2 × 104 , an embedding dimension of 100, and a window
size of 5.

the Plurality rule but still 19.5% neutrality error). Large violations
of anonymity are also observed under the MLP and CNN archi-
tectures (the WEC is anonymous by design). This is particularly
noteworthy since anonymity and neutrality are always satisfied by
the given voting rules. The MLP and CNN models regularly vio-
late anonymity more than neutrality (with the models trained on
Plurality demonstrating the smallest such difference).

Regarding the other axioms, all models adhere perfectly to Pareto,
in accordance with the voting rules on which they are trained. The
MLP and WEC models trained on Plurality seem to satisfy the Con-
dorcet principle more than Plurality does, but the opposite holds
for the CNN model. Along a similar line, the MLP model trained
on Borda seems to satisfy the Condorcet principle more than Borda
does, but this is not the case for the CNN and WEC models. Since
Copeland always satisfies the Condorcet principle, the correspond-
ing principled error of all models is positive—yet, it is rather small.
The MLP and WEC models trained on Plurality and Borda, as well
as the CNN model trained on Plurality, satisfy independence to a
similar degree as the rules do on which they are trained. All models
trained on Copeland satisfy independence more than Copeland does,
and the same holds for the CNN model trained on Borda.

Discussion. Regarding the learnability of different voting rules,
the simplicity of Plurality is probably the reason behind the high
accuracy with which all models learn it. However, this simplicity
also renders Plurality problematic in other contexts (Laslier, 2011).

The models take a stance on the well-documented tension between
anonymity and neutrality.7 They tend to favor outcomes that align
more closely with the former than with the latter. This inclination
exposes an inherent bias within neural networks when navigating
fundamental democratic axioms.

As the architectures are not invariant to permutations of the input
data, the severe violations neutrality (and of anonymity for MLPs
and CNNs) are not a priori surprising. What is surprising is that this
violation persists even for high accuracy with respect to rules that
are perfectly neutral and anonymous.

Overall, our experiment on accurate versus principled learning
within voting contexts highlights precisely the importance of the
reasons behind automated decision-making. Outcomes that are mim-
icking well-defined voting rules are arguably still unsafe to rely on,
since they do not come with a guarantee of respecting the principles
on which those rules are built.

6.2. Learning Principles by Example?

Can we teach neural networks voting-theoretic principles, beyond
merely presenting data from various voting rules? A natural ap-
proach for integrating expert knowledge in neural networks is data
augmentation. In the voting-context, this was proposed by Xia (2013)
but has not been tested in practice, to the best of our knowledge. We
focus on the neutrality axiom, since it was violated most, and we
also test the effects of data augmentation on the model’s accuracy.

Design. We train each one of the three neural network architectures
(MLP, CNN, and WEC) on data from each one of the three basic
voting rules (Plurality, Borda, and Copeland); but we vary the ratio
p of sampled data and augmented data, while keeping the total
number of data points fixed. Thereby, any improvement comes from
the quality of the augmented data points and not from merely a
higher quantity of data points.

Specifically, given a percentage 1 ⩽ p ⩽ 100, we first sample p

(times the total data size) many profiles and compute the correspond-
ing winning sets according to the considered rule; call these the
sampled data points. Then we generate the remaining 100 − p many
data points as follows: we randomly pick one of the sampled data

7No voting rule that always elects a single winner can simultaneously uphold both
anonymity and neutrality.
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Figure 4: Training the three architectures (MLP, CNN, and WEC) on data from Plurality, Borda, and Copeland (the three bars in each plot) with
IC samples and comparing the errors in both accuracy and axiom satisfaction.

points (P,S) and a permutation σ of the alternatives, and then add
the data point (σ(P),σ(S)); call these the augmented data points.
Thus, the augmented data points are “neutrality variations” of the
sampled data points. For different choices of p, we then test the
models’ neutrality satisfaction and accuracy.

Results. Results for IC sampling are exhibited in Figure 5 (and
for the Mallows model in Figure 8 in the Appendix). We find that
data augmentation does not improve adherence to neutrality: the
ratio p between sampled and augmented data does not seem to
correlate with neutrality satisfaction. For p < 10%, i.e., with al-
most only augmented data, both accuracy and neutrality satisfaction
are unsatisfactory, so data augmentation only becomes relevant for
p ⩾ 10%. Here accuracy is stable: it does not vary by more than
5%. In some cases, neutrality is equally stable: for the CNN on all
rules and the MLP on Borda (certainly for p ⩾ 25%, with slightly
worse neutrality satisfaction for smaller p). In the remaining non-
stable cases, the best neutrality satisfaction is achieved for p = 100%,
i.e., without augmented data—with only negligible exceptions.8

Thus, neither in the stable nor the unstable cases can we see reli-
able comparative improvements in neutrality satisfaction with more
neutrality-augmented data.

Discussion. Learning voting-theoretic principles by examples—
augmented to the training data—does not seem to work for neural
networks: Comparatively more neutrality-augmented data does not
lead to higher neutrality satisfaction. However, an advantage of
data augmentation is a drastic increase in data efficiency when we
only aim for accuracy. Sampling only 10% of the total data set (and
using neutrality augmented data for the remaining 90%) does not
substantially decrease the MLP’s or WEC’s accuracy in comparison
to sampling the whole data set. This is crucial if we use real and not
sampled election data, where having access to a vast amount of data
points is practically impossible. Even when more data is needed to
increase the accuracy of network, we could build an appropriate data
set based on a limited amount of real data points and then augment
it via the neutrality axiom.

6.3. Rule Synthesis Guided by Principles?

We saw that neural networks, when trained on data from established
voting rules, struggle to vote with principles. This raises the question:
can we directly train neural networks to form principled collective
decisions, without relying on any pre-existing voting rules? This will
be limited by Arrow’s Impossibility Theorem (Arrow, 1951): a voting

8The only two exceptions are the CNN on Plurality (where neutrality is most satisfied
at p = 75% but to a very similar degree as for p = 100%) and the CNN on Copeland
(where neutrality is minimized at p = 25%). Moreover, CNN on Borda and MLP on
Copeland have a local—albeit not global—minimum at p = 25%. Thus, while there
might be some special cases where neutrality is improved in the highly augmented
scenario, this is not enough to consider data augmentation as a successful strategy to
improve neutrality satisfaction (which is what we are concerned with here).

rule cannot simultaneously satisfy anonymity, Pareto, and indepen-
dence. Neural network-based approaches also face this impossibility.
However, how close can we get to full axiom satisfaction? We design
an optimization task, using custom loss functions, to guide neural
networks in learning novel and principled voting rules.

Design. We train each one of the three neural network architectures
(MLP, CNN, and WEC) on the loss functions defined in Section 4.4
which represent the axioms anonymity, neutrality, Condorcet, Pareto,
and independence. Since neural networks could attempt to vacu-
ously satisfy the axioms by proposing no winner, we also consider
the “No-winner” loss function, which demands the winning sets to
be nonempty. Moreover, by Arrow’s Theorem, the axioms cannot be
jointly satisfied and will, hence, negatively influence each other. So
optimizing for all axioms is not necessarily the best. Instead, we pick,
for each architecture, a set O of objectives that we optimize for. For
WEC, we choose: no winner, Condorcet, and Pareto. For MLP and
CNN, we add: anonymity and independence. Then the optimization
problem is:

argmin
w

∑
O∈O

E
P∼D

[
LO(fw, P)

]
,

where the loss functions LO are described in Section 4.4 and D is the
chosen distribution of profiles P (IC or Mallows). Note that, unlike
the previous experiments, this is an unsupervised learning task.

In order to have an architecture that also is neutral by design (not
just anonymous by design like the WEC), we design a further de-
coding function in addition to the one used so far (Section 4.3). This
neutrality-averaged decoding works as follows (cf. Burka et al., 2022).
Given an input profile, we first generate all alternative-permuted
versions of the profile, then compute the logits-predictions of the
model on each of those permuted profiles (in one batch), next de-
permute the predictions again and average all of them, and finally
we turn those average logits into a winning set with the decoding
function used so far.

Thus, WEC with neutrality-averaged decoding is anonymous and
neutral by design. For the other architectures, we also test a decoding
method that is neutrality-and-anonymity-averaged. For that, given an
input profile, we first randomly generate 12 alternative-permuted
versions of it, and, for each of those, we also randomly generate
10 voter-permuted versions and, as before, compute the averaged
logits and from those the winning set. The numbers are explained as
follows: Neutrality-averaging requires, with at most 5 alternatives,
considering at most 5! = 120 permutations; hence neutrality-and-
anonymity-averaging also considers 12 × 10 = 120 permutations
(checking all 55! ≈ 1073 voter permutations would be infeasible).

Results. Table 1 shows the axiom satisfaction of different neural
networks (bottom) and, for comparison, of several known rules from
voting theory (top), all using IC sampling (for Mallows see Table 6 in
the Appendix). The best neural-network based rule in terms of axiom
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Figure 5: For each architecture, the accuracy and neutrality error across different ratios of augmented data. For example, 10% in the x axis
means that the dataset consists of 10% sampled data and 90% augmented data.

satisfaction is the neutrality-averaged WEC, with close contestants
the neutrality-averaged CNN and MLP. The neutrality-averaged
WEC clearly outperforms the classic Plurality, Borda, and Copeland
rules in every single axiom. Even when we consider more modern
rules in voting theory, the neutrality-averaged WEC is competitive:
the existing rule with highest axiom satisfaction is Stable Voting and
its edge is marginal, with its average axiom satisfaction being less
than 1% higher than that of the neutrality-averaged WEC.9 (In the
Mallows case, the neutrality-averaged WEC even just beats all other
voting rules, see table 6 in the Appendix.10)

In addition to examining axiom satisfaction, we should also con-
sider how often the examined rules produce the same outcomes:
because similar axiom satisfaction does not imply similarity of out-
comes.11 Table 2 describes similarity in outcome between the five
rules which excelled in axiom satisfaction, using IC sampling (for
Mallows, see Table 7 in the Appendix). In particular, we see that the
rule discovered by the neutrality-averaged WEC model is substan-
tially different from the existing voting rules: it proposes different
outcomes than each one of them at least 9.3% of the time. In com-
parison, Stable Voting that was found best in Table 1 disagrees with
Borda and Copeland 8.9% of the time and with Weak Nanson and
Blacks only 6.6% of the time. Thus, the discovered rule not only is
competitive in axiom satisfaction, it also is novel, i.e., substantially
different from existing voting rules.

To illustrate the difference between the discovered and the existing
rules, Figure 6 shows an example of a profile where the winning set
provided by the neutrality-averaged WEC model is different to all
the winning sets provided by the considered existing voting rules.
The choice of the WEC also has intuitive plausibility: it chooses
alternative a which, among the eight voters, is three times the most
preferred option and two times the second-most preferred option.

Discussion. The reason why the WEC outperforms the other two
architectures is that, because it is anonymous by design, it is enough
to use the neutrality-averaged decoding to get a model that is anony-
mous and neutral. Since the MLP and CNN are not anonymous,
they need neutrality-and-anonymity-averaged decoding to become
anonymous and neutral by design. This, however, needs infeasi-
bly many permutations, so it can only be approximated via sam-
pling permutations. Here, however, the tension between the ax-
ioms of anonymity and neutrality resurfaces: sampled neutrality-
and-anonymity-averaging can result in negative interference with
the other axioms yielding worse performance than just neutrality-
averaging (e.g., the CNN rules in Table 1). Mere neutrality-averaging

9Table 3 in the Appendix suggests that more gradient steps do not further improve the
results.

10Tables 4 and 5 in the Appendix suggest the statistical robustness of these results by
reporting the average results across 5 runs of this experiment with different seeds.

11For example, the Blacks and Weak Nanson rules are close in average axiom satisfaction
(less than 1% difference), but Table 2 shows that more than 8% of the time they propose
a different set of winners.
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{a} neutrality-averaged WEC
{b} Blacks, Stable Voting, Borda, Weak Nanson, Copeland

{a,e} Plurality, PluralityWRunoff PUT
{e} Instant Runoff TB, Anti-Plurality

{a,b} Llull, Uncovered Set, Banks, Coombs, Baldwin, and Kemeny-Young
{a,b,e} Top Cycle

Figure 6: Profile where the ‘WEC n’ model disagrees with existing
voting rules. The winning sets for each rule are mentioned
below the table.

also influences the satisfaction of the other axioms, but in this case
not in a negative way.12

Moreover, for the WEC just three optimization objectives were
enough to obtain the above competitive results. Since the MLP and
CNN are not anonymous by design, they needed to optimize for
anonymity as well. The MLP and CNN also needed to optimize
for independence, while the WEC interestingly had enough implicit
inductive bias toward satisfying independence—again highlighting
non-trivial interference of the axioms and the network architecture.

The neural networks beat the classic voting rules in terms of axiom
satisfaction while being comparable to the best voting rules known
today. This may be taken to suggest that existing rules may already
be close to optimal axiom satisfaction. In other words, they are in
the (approximate) Pareto front of axiom satisfaction. At the same
time, even if the novel rules derived from axiom optimization inherit
the opacity of neural networks, they assure high adherence to key
normative principles in collective decisions. Since these newly dis-
covered rules were substantially different from existing rules, they
extend the boundaries of what is so far explored in voting theory.

7. Discussion

With our axiomatic deep voting framework, we investigated the
space of all voting rules by fruitfully combing voting theory and
machine learning. The neural network explores the space and the
voting-theoretic axioms evaluate the network, thus guiding the ex-
ploration. The universal approximation theorems (Hornik et al.,
1989; Cybenko, 1989) ensure that the neural networks are dense in
the space of all voting rules, so all areas of that space can be explored
with axiomatic deep voting. Arrow’s Impossibility Theorem (Arrow,
1951) establishes insurmountable divisions of that space: e.g., the

12We did not use neutrality-averaging in the previous experiments because it would not
directly correspond to the binary cross entropy loss and the interference with the other
axioms blurs the axiomatic evaluation of the neural network.
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Anon. Neut. Condorcet Pareto Indep. Average

Plurality 100 100 80.2 100 28.5 81.8
Borda 100 100 95.5 100 37.2 86.5
Anti-Plurality 100 100 74.2 100 24.8 79.8
Copeland 100 100 100 100 28.0 85.6
Llull 100 100 100 100 26.8 85.4
Uncovered Set 100 100 100 100 27.8 85.5
Top Cycle 100 100 100 100 29.0 85.8
Banks 100 100 100 100 27.8 85.5
Stable Voting 100 100 100 100 43.0 88.6
Blacks 100 100 100 100 35.2 87.1
Instant Runoff TB 100 100 94.8 100 28.2 84.6
PluralityWRunoff PUT 100 100 95.0 100 25.5 84.1
Coombs 100 100 96.2 100 34.5 86.2
Baldwin 100 100 100 100 39.2 87.9
Weak Nanson 100 100 100 100 40.0 88.0
Kemeny-Young 100 100 100 100 39.2 87.9

MLP p (NW, A, C, P, I) 77.8 75.8 92.5 100 39.5 77.1
MLP n (NW, A, C, P, I) 89.2 100 95,0 100 42.2 85.3
MLP na (NW, A, C, P, I) 89.8 86.8 95.5 100 36.5 81.7
CNN p (NW, A, C, P, I) 85.2 67.2 92.0 100 39.5 76.8
CNN n (NW, A, C, P, I) 92.2 100 94.5 100 40.0 85.4
CNN na (NW, A, C, P, I) 86.0 86.5 94.8 100 34.0 80.2
WEC p (NW, C, P) 100 72.5 94.2 100 41.8 81.7
WEC n (NW, C, P) 100 100 96.8 100 41.2 87.6

Table 1: Axiom satisfaction of different rules (top part of the table) and models (bottom part of the table), for IC sampling. Rounded to one
decimal. The names of the models are explained as follows: The letters after the architecture type indicate how the voting rule is
computed from the model: p–plain (i.e., no averaging), n–neutrality-averaged, na–neutrality-and-anonymity-averaged. The letters in
the brackets indicate which axioms the model optimized for during training: NW–No winner, A–Anonymity, C–Condorcet, P–Pareto,
I–Independence. All models have been trained for 15k gradient steps with batch size 200 and the same seed. The WEC by far was the
fastest.
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WEC n 100 90.7 90.2 89.6 88.1 87.4
Blacks 100 95.65 95.45 91.82 90.56
Stable Voting 100 91.1 93.38 91.99
Borda 100 87.27 86.01
Weak Nanson 100 92.26
Copeland 100

Table 2: Similarities between the rules. Computed on 10.000 IC-
sampled profiles. For example, the entry 90.2 in row ‘WEC
n’ and column ‘Stable Voting’ means that in 90.2% of the
sampled profiles Stable Voting outputs the same winning set
as the neutrality-averaged WEC.

area of rules satisfying anonymity and Pareto does not intersect the
area of rules satisfying independence.

The importance of our results for AI is twofold. First, the axiomatic
evaluation offers another cautionary tale that accuracy is not every-
thing: Neural networks can have high accuracy (descriptively good)
without following the right reasons (normatively bad). Second, this
changes, however, when we move from the supervised setting of
learning rules from examples to the unsupervised setting of directly
optimizing axiom satisfaction. We were able to do this by translating
the voting-theoretic axioms into corresponding loss functions. Hav-
ing a way to optimize the axioms is important because the axioms
can be seen as mathematical formalizations of important normative
notions in modern machine learning. For example:

• Bias: anonymity says that the neural network is not biased
towards particular individuals.

• Fairness: neutrality demands that the neural network treats all
alternatives equally.

• Value-alignment: the Pareto principle requires that if all individ-
uals value one alternative more than another, then the neural

network aligns with this; and similarly for the Condorcet prin-
ciple.

• Interpretability: independence provides a sense of ‘composition-
ality’ when interpreting the network—to understand its choice
for two given alternatives, we can ignore all other alternatives.

Hence, our axiomatic optimization provides a way of improving the
neural network—in a mathematically precise sense—regarding bias,
fairness, value-alignment, and interpretability.

Moreover, qua interdisciplinary project, our results are also rel-
evant for voting theory. Axiomatic deep voting offers a new tool
for the field’s central goal of exploring the space of all voting rules.
While existing voting rules are crafted by human insight, we could
find—in a completely automated process—novel voting rules that
are comparable in terms of axiom satisfaction to the best rules known
today. This provides a promising starting point for an analytic ex-
ploration of new axiom-optimal voting rules and the influence the
axioms exert on each other.

Limitations. We tested a wide range of standard neural network
architectures. However, future work could also investigate further
architectures like Set Transformers, Graph Isomorphism Networks,
or Deep Sets (which were used by Anil and Bao (2021)) and, more
generally, the transformer architecture (as a refinement our word
embedding architecture). We also covered the most important voting-
theoretic axioms, but yet more can be considered, e.g., monotonicitiy
and transitivity (the latter then requires architectures that are not
transitive by design). Finally, the large number of permutations
causes a high statistical variance in testing the satisfaction of the
independence axiom.

Future work. First, more options in generating the dataset can be
explored. For example, we can consider the extrapolation task in
which the model has to find a general rule after only observing the
rule on a small part of the input space, namely the profiles where
some given voting rules agree or satisfy a given axiom. Or we
can consider the interpolation task in which the model sees data of
different rules and has to find a compromise between their outputs.
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Second, we can implement further social choice theory frame-
works. Since we already output logits corresponding to the alter-
natives, we could, instead of winning sets, also consider preference
rankings or welfare functions. It would also be interesting to con-
sider judgment aggregation, which includes reasoning about logical
implications between the alternatives.

Third, it seems promising to bridge notions of explainability in vot-
ing theory (Cailloux and Endriss, 2016; Nardi et al., 2022; Boixel et al.,
2022) and notions of explainability in AI (Adadi and Berrada, 2018).
In particular, is it possible to extract out a symbolic representation
(e.g., in logic programming) of the rule that the model learned?

Fourth, studying the voting-theoretic concept of manipulatability
via neural networks (Holliday et al., 2024) can be further connected
to machine learning notions like adversarial attacks (Goodfellow et al.,
2015) or performativity (Perdomo et al., 2020).

Fifth, from the point of view of geometric deep learning (Bronstein
et al., 2021), axioms represent symmetries that the neural networks
should learn. For example, anonymity says that the neural network
should be invariant under the group action of the voter-permutation
group on profiles; and neutrality says that the neural network should
be equivariant under the group action of the alternative-permutation
group on profiles and winning sets, respectively. It seems worth
exploring this connection to geometric deep learning.

8. Conclusion

We introduced the axiomatic deep voting framework to study how
neural networks aggregate preferences. We found that neural net-
works do not learn to vote with principles, despite achieving high
accuracy, when trained on data from existing voting rules—even
when augmented with axiom-specific data. However, they do learn
to vote with principles when they directly optimize for axiom satis-
faction, which we achieved by translating axioms into custom loss
functions. The axiomatic deep voting framework promises fruitful
further investigation both in voting theory (new ways of exploring
the space of voting rules) and AI (a mathematically precise testing
ground for normative notions like bias and value-alignment).
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A. List of all loss functions

We continue from section 4.4 and define the other loss functions that
we use and discuss their differentiability. Recall that KL refers to
Kullback–Leibler divergence.13

Anonymity For convenience, we repeat the definition for the
anonymity loss. Given the network fw and profile P, uniformly
sample N-many permutations π1, . . . ,πN of the set of voters of P
and define

LA(fw,P) :=
1
N

N∑
r=1

KL
(
fw

(
e(P)

)
, fw

(
e(πr(P))

))
.

Condorcet If P has no Condorcet winner, LC(fw,P) := 0, and
otherwise, if that Condorcet winner is alternative a, define (recall a
is the one-hot vector for alternative a)

LC(fw,P) := KL
(
fw(e(P)),a

)
.

Pareto We define (recall that σ is the sigmoid function and nP
a≻b =

n means that all voters in P rank a above b)

LP(fw,P) :=
∑

a,b with nP
a≻b=n

σ
(
fw(e(P))b

)
.

Independence Define LI(fw,P) := 0 if P does not have at
least two alternatives. Otherwise, randomly sample N-many pairs
(ar,br) of distinct alternatives in P and randomly sample, for each
ranking Pk of P = (P1, . . . ,Pn), a shuffling P ′

k of Pk in which,
however, the order of ar and br is the same as in Pk, and set
Pr := (P ′

1, . . . ,P ′
n). Write ŷ := fw(e(P)) and ŷr := fw(e(Pr)),

and define

LI(fw,P) :=

N∑
r=1

KL
((

ŷar ŷbr

)
,
(
ŷr
ar

ŷr
br

))
.

No winner Writing ŷ = fw(e(P)) we want that at least one of
the numbers in p :=

(
σ(ŷ1), . . . ,σ(ŷm)

)
is above 0.5, i.e., the

maximum norm ∥p∥∞ should be above 0.5. Hence the more it is
below that, the worse the loss:

LNW(fw,P) := max
(
0.5 − ∥p∥∞, 0

)
.

For almost-everywhere differentiability use the distributivity of
the differential operator over sums, the chain rule, and the almost-
everywhere differentiability of the involved functions (KL, σ, max,
∥ · ∥∞).

B. Experiment 1

We add figure 7.

C. Experiment 2

We add figure 8.

D. Experiment 3

We add tables 3, 4, 5, 6, and 7.

13Though, in principle, other distance/similarity functions can be considered.
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Figure 7: Training the architectures (MLP, CNN, WEC; the three columns) on data from different voting rules (Plurality, Borda, Copeland; the
three bars in each plot) using different sampling methods (IC, URN, MALLOWS, Euclidean; the four rows) and comparing the errors
in both accuracy and axiom satisfaction.

Anon. Neut. Condorcet Pareto Indep. Average

WEC n (NW, C, P, round 0) 100 100 97.5 100 46 88.7
WEC n (NW, C, P, round 1) 100 100 100 100 38.5 87.7
WEC n (NW, C, P, round 2) 100 100 100 100 34.8 87
WEC n (NW, C, P, I, round 3) 100 100 100 100 31.8 86.3

Table 3: The result of keeping on training a WEC model: each round adds 20k gradient steps to the previous one. Round 1 is with a learning
rate of 10−3, round 2 with 10−4, round 3 with 5 ∗ 10−5, and round 4 the same but with added optimization of independence. IC
sampling.
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Figure 8: The top row is experiment 2 with IC sampling (repeated for convenience from the main text) and the bottom row is with Mallows
sampling. For each architecture (columns from left to right: MLP, CNN, WEC), the accuracy and neutrality error are plotted across
different ratios of augmented data. For example, 10% in the x axis means that the dataset consists of 10% sampled data and 90%
augmented data.

Anon. Neut. Condorcet Pareto Indep. Average

Blacks 100 100 100 100 36.06 87.24
Stable Voting 100 100 100 100 39.74 87.96
Borda 100 100 94.12 100 35.32 85.9
Weak Nanson 100 100 100 100 39.62 87.92
Copeland 100 100 100 100 27.64 85.54

WEC n (NW, C, P) 100 100 95.4 100 43.88 87.88

Table 4: The average result over 5 runs with different seeds of experiment 3 for the ‘WEC n’ model and its closest rules. IC sampling.

Anon. Neut. Condorcet Pareto Indep. Average

Blacks 100 100 100 100 35.94 87.18
Stable Voting 100 100 100 100 40.8 88.14
Borda 100 100 94.36 100 35.36 85.94
Weak Nanson 100 100 100 100 40.26 88.06
Copeland 100 100 100 100 27.96 85.6

WEC n (NW, C, P) 100 100 94.66 100 41.94 87.34

Table 5: The average result over 5 runs with different seeds of experiment 3 for the ‘WEC n’ model and its closest rules. Mallows sampling.
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Anon. Neut. Condorcet Pareto Indep. Average

Plurality 100 100 83.0 100 30.2 82.7
Borda 100 100 92.8 100 32.8 85.1
Anti-Plurality 100 100 76.5 100 26.2 80.5
Copeland 100 100 100 100 27.8 85.5
Llull 100 100 100 100 26.2 85.2
Uncovered Set 100 100 100 100 29.5 85.9
Top Cycle 100 100 100 100 25.2 85.0
Banks 100 100 100 100 25.2 85.0
Stable Voting 100 100 100 100 39.0 87.8
Blacks 100 100 100 100 33.8 86.8
Instant Runoff TB 100 100 96.8 100 29.0 85.2
PluralityWRunoff PUT 100 100 94.0 100 27.0 84.2
Coombs 100 100 95.5 100 30.2 85.2
Baldwin 100 100 100 100 39.2 87.9
Weak Nanson 100 100 100 100 33.8 86.8
Kemeny-Young 100 100 100 100 38.2 87.7

MLP p (NW, A, C, P, I) 78.8 76.0 94.0 100 38.8 77.5
MLP n (NW, A, C, P, I) 90.8 100 94.2 100 36.2 84.2
MLP na (NW, A, C, P, I) 92.5 89.5 92.5 100 33.5 81.6
CNN p (NW, A, C, P, I) 80.5 68.8 94.5 100 38.8 76.5
CNN n (NW, A, C, P, I) 91.5 100 95.0 100 42.2 85.8
CNN na (NW, A, C, P, I) 88.0 83.8 94.0 100 36.5 80.5
WEC p (NW, C, P) 100 65.5 91.8 100 37.8 79
WEC n (NW, C, P) 100 100 97.0 100 44.0 88.2

Table 6: Axiom satisfaction of different rules (top part of the table) and models (bottom part of the table). For Mallows. Rounded to one
decimal. The names of the models are explained as follows: The letters after the architecture type indicated how the voting rule is
computed from the model: p–plain (i.e., no averaging), n–neutrality-averaged, na-neutrality-and-anonymity-averaged. The letters in
the brackets indicate which axioms the model optimized for during training: NW–No winner, A–Anonymity, C–Condorcet, P–Pareto,
I–Independence. All models have been trained for 15k gradient steps with batch size 200 and the same seed. The WEC by far was the
fastest.

W
EC

n

St
ab

le
Vo

tin
g

Bl
ac

ks

Bo
rd

a

W
ea

k
N

an
so

n

C
op

el
an

d

WEC n 100 90.1 90.1 88.4 88 87.7
Stable Voting 100 96.22 91.57 93.28 92.23
Blacks 100 95.35 91.71 90.83
Borda 100 87.06 86.18
Weak Nanson 100 92.3
Copeland 100

Table 7: Similarities between the rules. Computed on 10.000 Mallows-sampled profiles. For example, the entry 90.1 in row ‘WEC n’ and column
‘Stable Voting’ means that, among the sampled profiles, in 90.1% of the cases the Stable Voting rule outputs the same winning set as the
model neutrality-averaged WEC model.
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