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Abstract We propose a new interpretability method for neural networks,
which is based on a novel mathematico-philosophical theory of reasons. Our
method computes a vector for each neuron, called its reasons vector. We then can
compute how strongly this reasons vector speaks for various propositions, e.g.,
the proposition that the input image depicts digit 2 or that the input prompt
has a negative sentiment. This yields an interpretation of neurons, and groups
thereof, that combines a logical and a Bayesian perspective, and accounts for
polysemanticity (i.e., that a single neuron can figure in multiple concepts). We
show, both theoretically and empirically, that this method is: (1) grounded in a
philosophically established notion of explanation, (2) uniform, i.e., applies to
the common neural network architectures and modalities, (3) scalable, since
computing reason vectors only involves forward-passes in the neural network,
(4) faithful, i.e., intervening on a neuron based on its reason vector leads to
expected changes in model output, (5) correct in that the model’s reasons
structure matches that of the data source, (6) trainable, i.e., neural networks
can be trained to improve their reason strengths, (7) useful, i.e., it delivers on
the needs for interpretability by increasing, e.g., robustness and fairness.*

Keywords Deep learning, interpretability, explainable AI.

1. Introduction

Neural networks, the drivers of the recent boom in artificial intelligence (AI), excel at
learning patterns from data. However, they are also notoriously opaque: the parameters
that they find during training are difficult to interpret in human-understandable terms.
Solving this problem is the goal of AI interpretability research [9, 31, 39, 38]. A prominent
and rapidly growing approach is mechanistic interpretability. It aims to analyze the internal
mechanisms of the neural network in order to understand and improve it [45, 44, 40, 19].
At AAAI 2025, Chalmers [4] argued that this should be done specifically in terms of
propositional attitudes: using propositions, phrased in our language, that describe the
AI system’s goals and models of the world. Finding and logging these propositions is
a research program that is “highly nontrivial” and “we don’t yet have any broad and
reliable techniques” [4, p. 10].

*The source code will eventually be made available here: https://github.com/LevinHornischer/
ReasonsMethod.
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In this paper, we suggest a first step. We build on a recent theory of reasons [30] that
formalizes the language of reasons, which we ordinarily use to make sense of the world
and the mechanisms in it—be it physical processes, the behavior of others, or engineering
artifacts. Based on this theory, we develop a new interpretability method for neural
networks. It makes sense of individual neurons, and groups thereof, as epistemic reasons
that favor certain propositions with certain numerical strengths. We compute, for each
neuron, its reasons vector, from which we can compute how much it speaks for each
proposition. For example, for a neural network solving the MNIST task, we will compute,
e.g., that this particular neuron speaks with strength 2.36 for the proposition that the input
image depicts digit 3. Or in an LLM, we can compute that this group of five neurons
speaks most strongly for the prompt having a positive sentiment.

We find that our reasons method satisfies ten desiderata for interpretability that we
identify in the literature (section 2). The method applies to both individual neurons and
groups thereof, and it is rooted in a fundamental conceptual framework of making sense
of the world (section 3). The method can account for polysemanticity, since a single
reason can speak for multiple propositions. It connects to the logico-symbolic tradition of
understanding cognition by associating neurons with propositions, and it also connects
to the Bayesian tradition by describing how neurons update subjective probabilities.
In experiments (section 4), we see that the method applies across the common neural
network architectures and modalities. It is scalable, since computing the reasons vector
only involves forward-passes. The method is faithful, i.e., intervening according to the
reasons brings about the expected change in behavior; and it is correct in the sense that
the reason structure of a well-trained model matches that of the world. Reasons not only
interpret trained models, but we can also train a model via backpropagation to improve
its reasons strengths, and this also increases robustness and fairness.

2. Background: Desiderata for interpretability

We identify desiderata for any interpretability method that aims for mechanistic—or
even propositional [4] —interpretability. Afterward, we discuss them and the respective
literature.

1. Understandable: The interpretation should be in human-understandable terms.

2. Local and distributed: The interpretability method should interpret a neural network
in both a local (individual neurons) and a distributed (groups of neurons) way.

3. Mechanism-compatible: The interpretation should reflect: (a) the encoding of inputs,
(b) the real-valued activations of neurons across different inputs, (c) the decoding
of outputs, and (d) how neurons interact via weights and activation functions with
other neurons.

4. Uniform: The method should apply to all neural network architectures and data
modalities.

5. Scalable: The method should work both for small and large neural networks.

6. Transparent: The interpretability method should not require further interpretation of
its results or black-box training.
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7. Grounded: The method should provide a philosophically deep notion of interpreta-
tion that supports comparisons between a neural network, its interpretation, and
reality.

8. Faithful: The method should assign interpretations that represent faithfully, i.e.,
which track features of the network under relevant interventions.

9. Correct: The method should assign interpretations that represent correctly, i.e., where
the structure of the interpretations tracks the intended structure of reality (the data).

10. Useful: The method should deliver on the needs for interpretability, i.e., trust, causal-
ity, transferability, fairness, privacy, robustness/reliability, recourse, and debugging.

While 1 is uncontested, the literature is undecided on 2: whether it is individual neurons
that should be interpreted (as in the first neural networks [34]) or rather groups thereof
(distributed representation). See, e.g., [46, 42, 17] for discussion. Although interpretations
of individual neurons have been suggested in some cases [41, 1], a complete localist rep-
resentation is difficult, since neurons often are polysemantic, i.e., participate in several
concepts—they are in ‘superposition’ [46, 42, 12]. But 2 asks for as much of a partial localist
representation as possible, which ideally explains how distributed representations are
built up. Our reasons method provides this: the reasons vector is a local representation
since it is associated with a specific neuron, and it also partial since it ‘pushes’ into differ-
ent conceptual dimensions rather than a single one (cf. superposition). Aggregating the
reasons vectors of a group of neurons builds a distributed representation of the group.

Regarding 3, part (b) precludes an interpretation of a neuron’s activation as a classical
truth-value, but it allows more complex interpretations in terms of truth and falsity [24, 33].
The reason method will interpret activations as providing the components of the reasons
vectors. Regarding (d), [51] discusses desiderata for circuit discovery. For us, weights and
activation functions determine the reasons vector of a neuron based on the reasons vectors
of the neurons in the preceding layer.

Regarding 4–6, one of the most prominent approaches to mechanistic interpretability,
sparse auto-encoders (SAEs) [6, 3], required much work to scale [48]. Our reasons method
only requires forward passes of the model, while SAEs require extensive training, which
make them expensive to compute and difficult to evaluate [16, 23].

Desiderata 7–9 are explained in what we call the triangle of interpretability in figure 1 (left).
The interpretability method should connect three components: (1) the neural network;
(2) the human-understandable interpretations of the network parameters; (3) the reality,
which is available via data. The connection (1)–(3) is measured as accuracy: it requires
no interpretability since it just demands that the network’s behavior matches reality.
The connection (1)–(2) requires that the network’s internal mechanism is captured by the
interpretation. This is known as faithfulness and tested in terms of interventions [37, 19, 21,
50, 53, 36]. Intervening on the network parameters according to the interpretation should
result in the expected change in behavior. While accuracy requires behavioral correctness,
connection (2)–(3) requires mechanistic correctness. Given an interpretation of the network,
we not only want it faithfully representing the internal mechanisms, we also want that the
model’s mechanisms match those of reality. In section 4.1, we operationalize this notion
for our reasons interpretation via dimensionality reductions.

Finally, 10 is commonplace [31, 9], and we will find that reasons improve robustness
and fairness.
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Figure 1: Left: The triangle of interpretability. Right: The activation matrix.

3. Methodology: Reasons and the Reasons Method

We review the philosophical understanding of reasons and then the recently axiomatic the-
ory of reasons [30]. Afterward, we apply it to develop our reasons method for interpreting
neural networks.

Philosophy of reasons Talk of reasons for action (practical reasons) and reasons for belief
(epistemic reasons) is omnipresent in everyday communication and much researched
in philosophy [26]. Given our focus on interpretability, we consider epistemic reasons.
Different reasons may support the same proposition, and one and the same reason may
support different propositions. Moreover, reasons may do so with different strengths.
Having a reason for a proposition A is a particular propositional attitude, which is required
for an agent to believe A and which increases the probability the agent assigns to A

(proportional to the reason’s strength). Since reasons can act against each other and even
defeat each other [25], a rational agent needs to aggregate all available reasons before
forming a belief on their basis. One understanding of reasons is as ‘epistemic forces’ that
should aggregate additively much like physical forces do. This suggests that reasons might
have a vector structure, and aggregation and attenuation of reasons is vector addition and
scalar multiplication, respectively.

Theory of reasons The theory of reasons [30] formalizes these philosophical ideas. It
axiomatizes the following primitive notions:

• ‘x is a direct epistemic reason of strength α for proposition A’ (written R(x,A,α)).
E.g., x might be a strong reason for there will be rain presented by black clouds.

• ‘x◦y is the aggregation of reasons x and y’. E.g., y could be another reason presented
by a weather forecast, and x ◦ y would be the aggregation of the two reasons.

• ‘b ∗ x is the result of updating the agent’s current beliefs b with (the available)
reason x’. E.g., if x speaks strongly for A = there will be rain, the posterior subjective
probability b ∗ x(A) should be significantly greater than the prior probability b(A).

For a given reason x, it is not necessarily the case that for every proposition A there is
an α, such that R(x,A,α). To generalize R to all propositions A, additional probabilistic
weighing is required. For that purpose, the theory allows for the definition of a more
inclusive reason relation:

• ‘x is a doxastic reason of strength α for proposition A that is inferred relative to belief
b’ (written S(x,A,α,b)). E.g., given my belief that tonight’s party is sensitive to bad
weather, black clouds speak with high strength for the party being canceled.
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The axioms for these primitive notions include, e.g., the additivity of ◦ with respect to
R: R(x ◦ y,A,α) iff there are B,C,β,γ such that R(x,B,β), R(y,C,γ), A = B ∩ C ̸= ∅, and
α = β+γ. In contrast, ◦ is not generally additive with respect to S. The main mathematical
result is that, surprisingly, the models of the overall axiomatic theory of reasons are unique
up to a multiplicative constant c > 0. Hence we will work here directly with the models
given for c = 1.

The models of the reasons theory are determined by a choice of a finite set W =

{w1, . . . ,w2m}, for some positive integer m. Its elements will be called possible worlds or
samples. (They will be, as we will soon see, the situations in which the neural network can
be applied, e.g., input-label pairs.) Together with the powerset P(W), it forms a measur-
able space. The elements of P(W) are called propositions or events—i.e., a proposition is
identified with the set of possible worlds at which it is true. The negation or complement of
A is given by: Ac := W \A.1 A belief is a probability measure on (W,P(W)). A reason x is
a vector in R2m . Intuitively, x is the reason that speaks with strength xk for wk being the
actual world—i.e., R(x, {wk}, xk). Given a proposition A ⊆ W, the elementary reason for A,
written elA, is the vector in R2m which is 1 at component k if wk ∈ A and −1 otherwise.
Reason aggregation ◦ is vector addition. (So aggregations of elementary reasons need
not be elementary again.) Given a probability measure b on W and a reason x ∈ R2m , the
update of b by x is the probability measure defined by (for A ⊆ W):

b ∗ x(A) :=

∑2m
k=1 e

xkb(A ∩ {wk})∑2m
k=0 e

xkb({wk})
.2 (1)

The doxastic reason strength α with which x speaks for a proposition A relative to b (i.e.,
S(x,A,α,b)) is defined by:

α := D(x,A,b,W) :=
1
2

log
(b ∗ x(A)/b ∗ x(Ac)

b(A)/b(Ac)

)
. (2)

which is defined if, and only if, the proposition A is nontrivial, i.e., 0 < b(A) < 1.

Reasons method for interpretability Our reasons methods uses the reasons theory to
interpret neurons and groups thereof as follows. The main conceptual choice is the set
W = {w1, . . . ,w2m} of situations in which the neural network can be applied. For example,
in an image classification task, this could be input-label pairs. (We will see many more
examples in section 4.) Given a neuron u of the neural network, its reasons vector ru ∈ R2m

has, as value at component k, the activation that neuron u has in the possible world wk.3

In the example, if w = (x,y) is an input-label pair, then ru’s value at w is simply the
activation of neuron u after inputting x to the neural network.

Once the reasons vector ru is computed, we can use it to interpret the neuron u in two
ways—in line with logical and Bayesian tradition, respectively. (1) Logico-symbolically:
The neuron u represents the proposition A consisting of those possible worlds at which
ru has a positive value. (2) Probabilistically: Relative to a prior probability measure b on
W, the neuron u represents the probability distribution b ∗ ru. We get a combination of
both—which we hence will use below—via the reasons theory. (3) Strength-based: Relative

1The terms ‘possible worlds’, ‘propositions’, ‘negation’ are used in philosophy, while ‘sample’, ‘event’,
‘complement’ are used in statistics.

2If b is the uniform measure, b ∗ x is the well-known softmax of x.
3We do not use the variable ‘x’ since it commonly refers to the input to the neural network.
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Figure 2: Left: For each neuron in the different layers of LeNet, the strength with which
it speaks for (positive) or against (negative) the proposition ‘The input depicts
digit 3’. The number below the bars indicates the number of neurons in the layer.
Right: For each digit d (shown below each bar), the reasons strength of the output
neurons speak for ‘The input depicts digit d’.

to a prior probability measure b on W, the neuron u represents a strength profile, i.e., how
much it speaks for and against any nontrivial proposition. For example, if l is a label in the
classification task, the proposition ‘The input has label l’ is the set A = {(x,y) ∈ W : y = l},
and neuron u speaks for it with strength D(ru,A,b,W).

Finally, we interpret a group of neurons u1, . . . , ,un by the aggregated reasons vector
r := ru1 + . . . + run . This choice is corroborated by the general result of the reasons theory
that update and aggregation commute: b ∗ r is the same as the convex combination of the
b ∗ rk’s.

4. Experiments

To experimentally test our new interpretability method, we apply it in a wide range
of tasks: involving different architectures (convolutional neural networks, multi-layer
perceptrons, and transformer-based LLMs) and different modalities (images, tabular data,
and text).

4.1. Interpreting a classic: LeNet for MNIST

Given the method’s novelty, we first test it on a task—the MNIST task—with the classic
architecture that solved it: the convolutional neural network LeNet [29]. The task is to
classify images of handwritten digits according to which digit (0, . . . , 9) they depict. We
train the LeNet architecture on the MNIST training set and achieve > 99% accuracy on the
test set (details in appendix A).

Reason strengths To apply our reasons method, we choose the possible worlds as
input-label pairs.4 We sample a set W of 1024 such pairs (x, l) from the test set, so the
model has not seen them.5 The propositions of interest are ‘The image depicts digit d’, i.e.,
Ad := {(x, l) ∈ W : l = d}.

4We could add more information to a world: e.g., who wrote the digit; when and where it was written; or an
intended label in addition to the correct label (in case, say, someone wrote what looks like a ‘7’ but meant
a ‘1’).

5Appendix A establishes statistical robustness and shows no qualitative difference to using the training set.
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Now, for each neuron u in the trained LeNet model, we can compute its reasons vector
ru := (u(x) : (x, l) ∈ W), where u(x) is the activation of neuron u in the model on input
x. By taking the uniform measure b on W, we can compute, for each proposition Ad,
the strength D(ru,Ad,b,W) with which neuron u speaks for the proposition Ad. This is
shown, for d = 3, in figure 2 (left). We observe fairly low reason strengths in earlier layers
and stronger ones (either positive or negative) in the later layers. This is in line with CNNs
possessing a hierarchy of features: with earlier layers corresponding to low-level features
such as basic shapes, while later layers correspond to more abstract features [52]. Focusing
on the output neurons, figure 2 (right) shows their reasons strength for the different digits.
As desired, for each digit d, the output neuron corresponding to d strongly speaks for the
proposition ‘The image depicts digit d’, while the other output neurons strongly speak
against it.

When it comes to interpreting groups of neurons, the layers make a natural choice.
In appendix A, figure 8 shows how the layers (after aggregating the reasons vectors of
their neurons) update an initially uniform prior probability distribution over the possible
worlds. Even though we start with the uniform measure and use a balanced dataset, the
input layer introduces some bias among the worlds—and this bias is amplified by later
layers.

Faithfulness Next, we test the faithfulness of our interpretation via causal interven-
tions [21, 19, 37] or, more precisely, activation patching [50, 53, 36, 18]. Specifically, we test
this in two versions, for the hidden linear layer of our trained LeNet model.

Version 1: pos2neg. Fixing a digit d, we go through the test dataset considering images x
that are labeled with d. We input x into the model, which, due to its high accuracy, will
classify x almost always correctly as d. Now we consider the activations of the 20 neurons
in the linear layer that most strongly speak against digit d. We intervene and set their
activations to a ′ := m− 3a, where m is that neuron’s mean activation and a is its current
activation.6 From these intervened activations in the linear layer, we forward propagate to
calculate the intervened model output. It is a success if the model now predicts a digit
different from d. Figure 3 (left) shows that, for all digits except 1, we have a 100% success
rate. It also shows (as orange dots) the KL divergence between the originally outputted
probability distribution over the digits and the one after intervention.

Version 2: neg2pos. Fixing a digit d, we now consider test images x that are not labeled
with d. We input x into the model and now consider the activations of the 20 neurons in
the linear layer that most strongly speak for digit d. We intervene to set their activations to
a ′ := m− 5a and calculate the intervened model output. It is a success if the model now
predicts digit d. Note that this is much harder: intervening to do anything else is easier
than doing something specific. Still, figure 3 (right) shows that, for all digits except 3, 4, 9,
we have an approximately 60% success rate and, for all digits, a KL divergence of around
30. In the next subsection, when we train the model’s reasons, we see that these success
rates improve—thus further corroborating faithfulness.

Correctness We need to operationalize the idea that the reasons structure of the neural
network should match the reasons structure of the world. Inspired by theories of scientific

6Taking the mean—aka mean ablating—effectively ‘knocks out’ the neuron; and it does so better than zero
ablating, i.e., setting the neuron to zero [51, 53]. Adding −3a points the neuron in the opposite direction.
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Figure 3: Left: intervening on neurons speaking against a digit to flip the prediction away
from that digit. Right: intervening on neurons speaking for a digit to flip the
prediction to that digit.

representation [15], we measure how much the representational similarity between pos-
sible worlds matches their objective similarity. This is done via the activation matrix in
figure 1 (right). Given neurons u1, . . . ,un and possible worlds w1, . . . ,w2m , the value aij is
the activation of neuron uj at world wi. Thus, the j-th column is the reasons vector of neu-
ron uj, and we call the i-th row the reasons-character of the world wi (cf. C∗ algebras). Two
worlds are internally similar if their reasons-characters are close as vectors in Rn: the reason
structure of the neural network almost cannot tell these worlds apart. Two worlds are
externally similar if they have the same objective properties, i.e., the same label. Correctness
requires that internal similarity typically (i.e., defeasibly) entails external similarity. Thus,
worlds with the same label should form clusters in the space Rn of reasons-characters.

To observe potential clusters, we need to reduce the dimension from n to 2. So we
perform a Principal Component Analysis (PCA). (Appendix A shows similar results for
t-SNE and UMAP.) We sample 212 worlds from the test set and consider the neurons of
the hidden linear layer. We associate each of the 10 labels with a color. So if correctness
holds, we should find monochromatic clusters—which is the case, as figure 4 (left) shows.
If we do the same for the first convolutional layer, where we saw lower reasons strengths,
figure 4 (right) indeed does not show such clusters.

4.2. Improving reasons: do good reasons lead to more robustness and fairness?

We used the reasons method to interpret a trained model, but can we also improve the
model’s reasons? So the model not just performs well, but does so, literally, “for the
right reasons” [2, p. 5192]? The suggestive hope is that this delivers on the needs for
interpretability: if the model has good reasons for its output, it should be more robust and
fair.

Training reasons To improve a model’s reasons via backpropagation, we need a loss
function to measure the quality of its reasons with its current weights. Given weights
w and a batch x = (x1, . . . , xN) of inputs with corresponding labels y = (y1, . . . ,yN), we
define the doxastic reasons loss L(w, x,y). Let {l1, . . . , lC} be the set of classes (for MNIST this
is the set of digits). Let ŷw

k be the C-dimensional vector of logits produced by the model
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Figure 4: Left: After clustering together worlds (using PCA) that are internally similar
according to the neurons in the hidden linear layer, they also are externally
similar, i.e., have the same label. Right: This is not yet true for neurons in the first
convolutional layer.

on input xk using its weights w. We want that the d-th output neuron is a ‘good’ reason
for label ld. To formalize that, define W := {(xk,yk) : k = 1, . . . ,N} as the set of worlds.
For d = 1, . . . ,C, the reasons vector of the d-th output neuron is rd = (ŷw

k d : k = 1, . . . ,N)

and Ad = {(x,y) ∈ W : y = ld} is the proposition that the input has label ld. The strength
with which rd speaks for Ad should be high, so

L(w, x,y) =
C∑

d=1

e−D(rd,Ad,b,W). (3)

We instantiate a LeNet model and train it using the sum of the usual loss (i.e., cross
entropy) and this reasons loss. For comparison, we make a copy of the initial model
and train it on the very same sequence of batches but with only the usual loss. Both
models achieve > 99% accuracy. While correctness only marginally improves, faithfulness
improves more: in the more difficult ‘neg2pos’ version, the model now achieves success
rates between 60% and 80% for all digits (previously 6 digits were below 60%). More
details are in appendix B.7

Robustness We can improve a model’s reasons structure via training. But do good
reasons make it harder to trick the model? To test this, we adversarially attack both the
reasons-trained model and the comparison model with a FGSM attack [20]. This adds
ϵ-much adversarially crafted noise to the input images. We check, for different choices
of ϵ, how much accuracy decreases due to these attacks. We find that the model trained
for reasons is, for all considered ϵ’s, more immune to FGSM attacks than the comparison

7 There, we also consider an alternative loss function, which we call the elementary reasons loss. Curiously,
it improves faithfulness and correctness more than the doxastic reasons loss, but it does not improve
robustness unlike the doxastic reasons loss (as we will see next). So these notions interact with reasons
nontrivially.
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model. For ϵ = 0.15, this is 78.6% vs 69.9%, and for ϵ = 0.25, this is 44.6% vs 27.1% (more
details in appendix B). This is remarkable: First, nothing in the reasons training is specific
to defending adversarial attacks.8 Second, the reasons method increases interpretability
and robustness while maintaining the same high accuracy. Thus, it defies general tradeoffs
between accuracy and interpretability [11] and between accuracy and stability [5].

Fairness Moving to a different modality, we consider the task of predicting whether
a person’s income is above a given threshold based on tabular data about their age,
occupation, sex, etc. We use the modernized Adult dataset due to [7], here focusing on US
census data from Alabama in 2018. We consider two income thresholds: 25k and 50k. We
train multi-layer perceptrons (MLPs) for this task. Treating sex as a protected attribute,
we measure the MLPs’ fairness using standard metrics: disparate impact (DI) [13] and
equality of opportunity (EoO) [22]. We add a reasons-based fairness metric.

Given a list of inputs x = (x1, . . . , xN), let ŷw = (ŷw
1 , . . . , ŷw

N) be the corresponding
model outputs computed with its weights w. So ŷw

k is the value of the single output
neuron; if the sigmoid of it is > 0.5, the model predicts the income to be above the
threshold. Let W = {x1, . . . , xN} be the set of worlds, let A+ be the set of x ∈ W which the
model predicts to have an income above the threshold, and let Ap (resp., Au) be the set
of x ∈ W that belong to the privileged (resp., unprivileged) group. The reasons vector
of the single output neuron is ŷw. To be fair, the model’s reasons strength for a positive
prediction should be the same regardless of conditioning on the privileged group or the
unprivileged group. So, with the uniform measure b on W, the reasons difference is:

RD(w, x) :=
(
D(ŷw,A+,b(·|Ap),W) − D(ŷw,A+,b(·|Au),W)

)2. (4)

This not only measures trained models (smaller is better), but also serves as a loss function
to train models (an unsupervised one, since no labels are needed). To do so, we again
initialize an MLP, make a copy, train the original model with the sum of the usual loss
and the RD loss, and train the comparison model with only the usual loss (details in
appendix B). We find that, in the 25k version, the model trained for reasons performs
equally well as the comparison model, but it improves on RD. So there is a dimension of
fairness in addition to DI and EoO that could still be improved. In the 50k version, the
two models get perfect RD scores and perform equally well on the other metrics except
DI: here the reasons trained model fares better. This again shows that the comparison
model was not yet on the Pareto front of fairness. In sum, the reasons training could
improve along fairness dimensions while keeping the same accuracy—again defying
general fairness–accuracy tradeoffs [10].

4.3. Reasons in LLMs: mechanistic interpretability

A prominent tool for mechanistic interpretability of large language models (LLMs) are
sparse auto-encoders (SAEs) [6, 3], which were scaled in [48] to also find abstract features
represented by the neural network (e.g., sadness or sycophancy). As mentioned, SAEs
are expensive to train and difficult to evaluate, so we test if our reasons method—which
only needs forward-passes—also can identify such abstract features. For concreteness, we
focus on one abstract feature—sentiment—since it is well-studied in NLP with established

8The point here also is not to introduce a new defense to adversarial attacks. Rather, we wanted to answer
whether improved reasons lead to more robustness.
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datasets and baselines.9 We analyze the LLM Qwen2.5-0.5B-Instruct. Although small by
today’s standards, it solves the sentiment classification task (see below) and can easily be
run on a laptop.

We identify which neurons in the residual stream of the model speak most strongly for
positive and negative sentiment, respectively. To do so, we sample 1024 sentences from
the SST2 dataset [47], which contains movie review excerpts (e.g., “contains no wit, only
labored gags”). We use a two-shot prompt template asking about the sentence’s sentiment
(appendix C). The set W of prompts constructed from the selected sentences forms the set
of worlds. Now, for each ‘neuron’—or, rather, position—in the model’s residual stream,
we can compute its reasons vector: For each position n (of the 896 embedding dimensions)
and for each layer l (of the 24 layers), the reasons vector rn,l has, at component w ∈ W,
the value en, where e is the embedding vector for the last token in layer l given prompt
w. We use the NLTK SentimentIntensityAnalyzer to rank the selected sentences by positivity
and by negativity. Let A+ (resp., A−) be the set of worlds using the 25 most positive
(resp., negative) sentences. Figure 5 (left) shows, for each position n in layer l, the reason
strength for positivity D(rn,l,A+,b,W) and for negativity D(rn,l,A−,b,W), respectively
(with b the uniform measure on W). Most of the strength is again found in the later layers.

Thus, we formed, in an automated way, hypotheses about the roles of the model’s
neurons. Next, we need to validate if this description of those components is correct [45].
Here, we again do this via causal interventions (cf. section 4.1). We sample 500 sentences
from SST2 (different from those used for the worlds). We use a three-shot prompt template
to classify a sentence as ‘a) positive’ or ‘b) negative’ (appendix C). Thus, the model achieves
an accuracy of 91.2%. For each sentence, we also perform the following intervention in
the last layer (before the unembedding). Pos2neg: if the model classifies the sentence
correctly as positive, we set each of the 5 neurons that most strongly speak for positivity
to a ′ := m − 5a, where m is the neuron’s mean activation and a its current activation;
and we set the 5 neurons speaking most against positivity to a ′ = m. Neg2pos: if the
model classifies the sentence correctly as negative, we set the 5 neurons speaking most for
negativity to a ′ := m− 7a; and we set the 5 neurons peaking most against negativity to
a ′ = m. In 97.9% of the cases, the pos2neg intervention indeed flips the model prediction
from ‘positive’ to ‘negative’. The intervention drops the model’s average next-token
probability for ‘a’ from 67.2% to 27.8%. In 98.6% of the cases, the neg2pos intervention
indeed flips the model prediction from ‘negative’ to ‘positive’. The average probability for
‘b’ drops from 69.1% to 2.4%.

In figure 5 (right), we can also see this in generation. Given a prompt about the movie
Titanic, we generate output with the model first as is, then with a positive intervention and
then with a negative intervention. The positive (resp., negative) intervention sets the 5
neurons speaking most for positivity (resp., negativity) to a ′ = 2m (resp., a ′ = 20m) and
the 5 neurons speaking most against positivity (resp., negativity) to a ′ = m (resp., a ′ = m).
After the interventions, the output becomes noticeably more positive and negative, respec-
tively, and this can also be observed statistically using the SentimentIntensityAnalyzer
across 100 generations (see appendix C).

9For an older discussion of ‘sentiment neurons’ using LSTMs, see [43, 8].
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Prompt

What do you think of the movie Titanic? Would you
recommend watching it? Why or why not?

Original output

The movie Titanic is a classic that has captured the hearts
and imaginations of audiences for generations. It tells
the story of the RMS Titanic, a luxurious . . .

Positive intervention

Watching Titanic was definitely one of cinema’s greatest
achievements—it captured audiences worldwide alike
through unforgettable visuals and poignant storytelling.
. . .

Negative intervention

Based on varying interpretations and general sentiments
based from reviews throughout decades since its incep-
tion, perhaps one could reasonably say as much . . .

Figure 5: Left: Reason strength of every neuron in the residual stream. Right: Generating
output with intervention on the ‘positivity’ neurons and the ‘negativity’ neurons,
respectively.

5. Discussion and conclusion

We introduced a new interpretability method based on a formalized notion of reasons.
We have shown, both theoretically and empirically, that the method scores well on our
desiderata for interpretability.

Limitations and future work As a new method, we established its promise by focusing
on breadth rather than depth. Accordingly, future work should continue our experi-
ments in more depth: testing bigger models and harder tasks in experiments 4.1 and 4.3,
investigating robustness for more adversarial attacks with a comparison to known de-
fenses in experiment 4.2, mapping the space of possible loss functions (cf. footnote 7),
and connecting to more metrics and tasks in the algorithmic fairness literature. Other
questions include: Which theoretical guarantees on faithfulness and correctness can one
derive under plausible assumptions? The reasons vectors of the neurons are connected
by the model’s weights into a network of reasons: can one abstract from it a high-level
and human-understandable network (analogous to [19]) or identify circuits (analogous
to [42])?
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Figure 6: Top: Computing reasons strengths using worlds from the test dataset, so the
model has not seen them. Bottom: Using the training dataset instead.

A. Experiment 1: Interpreting a classic

Architecture and training details The LeNet architecture is as follows:

• a convolutional layer of dimension (in-channel: 1, out-channel: 32, kernel: 3 × 3),

• a convolutional layer of dimension (in-channel: 32, out-channel: 64, kernel: 3 × 3),

• a max-pooling layer followed by dropout (25%) and flattening,

• a linear layer to 128 neurons followed by ReLU and dropout (50%),

• a linear layer to the 10 output neurons (for the 10 digits) followed by log-softmax.

We train with a batch size of 64 and 20 epochs, using the AdamW optimizer [32] with
the default learning rate. We load the MNIST dataset via torchvision.datasets, which
contains a balanced 60k images in the training set and 10k images in the test set.

Test vs training worlds Figure 6 shows the difference between using worlds from the test
dataset (as done in the main text, so the model has not seen them) and from the training
dataset. Using training worlds, the reasons strengths get higher values than with test
worlds. After all, the model has seen these worlds during training. However, there is no
qualitative difference.
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Stastical robustness Figure 7 shows the statistical robustness of the reasons strengths.
We compute the reason strength for three different instances of the LeNet architecture.
They all were trained on MNIST data and achieved accuracies > 99% but used different
random seeds. Which neurons in, say, the hidden layer strongly speak for digit 3 and
which against can vary between the models. So there is no implicit bias in the LeNet
architecture that would force a given neuron in the linear layer to play a specific role with
respect to digit classification. However, qualitatively speaking, all models show the same
behavior in the output layer: that neuron d strongly speaks for digit d and the others
strongly against digit d. But, again, the quantity especially of the negative strength can
vary.

Groups of neurons We consider the layers of the trained LeNet model as groups of
neurons. We compute how the layers update an initially uniform prior probability distri-
bution over the possible worlds. Specifically, this is done as follows. We again sample 1024
input-label pairs from the MNIST test dataset to form the set of worlds W. The prior b is
the uniform distribution on W. We start with layer 0, the input layer. For each neuron in
this layer, we compute its reasons vector as before. To aggregate all these reasons vectors,
according to the reasons theory, we sum all these vectors, to obtain the reasons vector
r0 of layer 0. To update the prior probability b with layer 0, we compute b0 := b ∗ r0.10

Similarly, we update b0 with layer 1, the first convolutional layer, to obtain b2, and so on
for the other layers. The resulting probability distributions are shown in figure 8. Even
though we start with the uniform measure and use a balanced dataset, the input layer
introduces some bias among the worlds—and this bias is amplified by later layers.

Different dimensionality reduction In operationalizing correctness, we used PCA as
a dimensionality reduction technique. Other popular such techniques are t-SNE [49]
and UMAP [35]. Figure 9 shows the results of the correctness experiment when using
those dimensionality reductions instead. Qualitatively, the results are the same: clear
monochromatic clusters form for the linear layer, but things are more chaotic in the early
convolutional layer. For the convolutional layer, the more sophisticated dimensionality
reduction methods t-SNE and UMAP can identify more monochromatic clusters compared
to PCA, but they are still more chaotic compared to the clear clusters that these methods
identify for the linear layer.

B. Experiment 2: Improving reasons

Training reasons After initializing a LeNet model and making a copy, we train the
original model with the sum of the usual loss (cross entropy) and the doxastic reasons loss
(equation 3)—adding both summands with equal weight—, while we train the comparison
model with only the usual loss. We use the same batches for both models, taken from the
MNIST train dataset, with a batch size of 2048 and 20 epochs. We again use the AdamW
optimizer [32].

The achieved accuracy with reasons training is 99.12% on the test set, while without
reasons training it is 99.11%. Figure 10 shows how the two models compare regarding
faithfulness, in the more difficult ‘neg2pos’ version. The success rates now have less

10For numerical stability, we first normalize r0 before computing b ∗ r0.
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Figure 7: The reason strength of three different models (one plot for one model): all are
instances of the LeNet architecture trained on MNIST data but with different
seeds.
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Figure 8: Updating a uniform prior distribution over possible worlds layer by layer.

Figure 9: Top left: TSNE for linear layer. Top right: TSNE for first convolutional layer.
Bottom left: UMAP for linear layer. Bottom right: UMAP for first convolutional
layer.
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Figure 10: Left: Faithfulness with doxastic reasons training. Right: Faithfulness without
reasons training.

Figure 11: Left: Correctness with doxastic reasons training. Right: Correctness without
reasons training.

variance and are all reliably above 60%, and the KL divergences have almost doubled.
Figure 11 shows how they compare regarding correctness. The clusters only marginally
became more separated.

Alternative loss function Using the same notation as for the doxastic reasons loss defined
in equation 3, we define here an alternative loss L ′(w, x,y), which we call the elementary
reasons loss. Given weights w and a batch x = (x1, . . . , xN) of inputs with corresponding
labels y = (y1, . . . ,yN), again let rd be the reasons vector of the d-th output neuron, and
let Ad = {(x,y) ∈ W : y = ld}. Another way to formalize that rd is a ‘good’ reason for
Ad is by saying that it is similar to the elementary reason elAd

, which is—in a sense—the
canonical reason for Ad. We measure similarity by cosine similarity CosSim, which takes
values in the interval [−1, 1], where +1 means most similar (i.e., codirectional). Hence
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Figure 12: Left: Faithfulness with elementary reasons training. Right: Faithfulness without
reasons training.

Figure 13: Left: Correctness with elementary reasons training. Right: Correctness without
reasons training.

1 − CosSim takes values in [0, 2] and we want to minimize it. So we define:

L ′(w, x,y) :=
C∑

d=1

1 − CosSim
(
rd, elAd

)
. (5)

When training with this loss, the achieved accuracy with reasons training is 99.05% on the
test set, while without reasons training it is 99.11%. Figure 12 shows how the two models
compare regarding faithfulness, in the more difficult ‘neg2pos’ version. The model now
achieves, for all digits except 2, a success rate of well above 90% (compared to around 60%
without reasons training). Figure 13 shows how they compare regarding correctness. We
get yet clearer monochromatic clusters.

Robustness Figure 14 shows the effectiveness of an FGSM attack on the reasons trained
model compared to the comparison model that has not been trained for reasons. On
the left, the reasons training is done with the doxastic reasons loss, and on the right
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Figure 14: Left: Robustness with and without doxastic reasons loss. Right: Robustness
with and without elementary reasons loss.

with the elementary reasons loss. Curiously, even though the elementary loss is better at
improving the model’s reasons structure (as seen in the preceding paragraph) compared
to the doxastic loss, it is the doxastic loss which yields more robustness to adversarial
attacks, while the elementary loss does not. Thus, there is a nontrivial relationship between
faithfulness, correctness, and robustness.

Training fairness via reasons difference The task is to predict, based on certain informa-
tion about a person, whether they earn more than a threshold amount. The two threshold
amounts that we test are 25k and 50k. We use the modernized Adult dataset due to [7],
available via the folktables package.11 The data can be chosen to come from different
US states and years; here we choose 2018 Alabama. The features in the dataset are the
following [7, appendix B]:

• AGEP: Age

• COW: Class of worker

• SCHL: Educational attainment

• MAR: Marital status

• OCCP: Occupation

• POBP: Place of birth

• RELP: Relationship

• WKHP: Usual hours worked per week past 12 months

• SEX: Sex (1: Male, 2: Female)

11Available at https://github.com/socialfoundations/folktables under the MIT licese.
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• RAC1P: Recoded detailed race code

In this experiment, we will treat sex as the protected attribute. The dataset has 22,268
entries. The percentage of the privileged group (male) is 52.2%. In the 25k version, the
percentage of positive classification is 62.6%; and in the 50k version, it is 31.1%.

We first train the following models on this task (without any reasons training) to get an
understanding of the baseline performance. The first group are the following standard
models (available in scikit-learn):

1. Logistic regression

2. Random Forest Classifier

3. C-Support Vector Classifier

The second group is the following MLPs. Each has 10 input neurons (for the 10 features)
and 1 output neuron (indicating positive or negative classification) and uses ReLU as
activation function.

1. MLP_s (‘small’): One hidden layer of size 100 followed by a second hidden layer of
size 50.

2. MLP_v (‘vanilla’): Four hidden layers each of size 128.

3. MLP_dn (‘dropnorm’): Also four hidden layers each of size 128, but with 20%-
dropout and batch norm [28].

We test all combinations of the following hyperparameters:

1. Learning rates: 1e-4, 1e-3, 1e-2.

2. Number of epochs: 5, 10, 20.

We train with binary cross entropy loss (with logits) using AdamW [32]. The training-test
split is 20% test data, and we scale the data using scikit-learn’s StandardScaler. Since
the dataset is unbalanced, we report the F1 scores (rather than accuracy) achieved by each
model in figure 15. Except for some outliers on the smallest learning rate, all models
achieve a very similar performance.

Based on this, we choose, for further reasons training, the MLP_dn model with a learning
rate of 1e-3 and 20 epochs: it achieves a performance comparable to the other models, but
it has higher numerical stability due to batch normalization, which is useful for computing
reason strengths (since this requires taking exponentials of neuron activations).

After initializing the MLP_dn model and making a copy, we train the original model
with the sum of the usual loss (binary cross entropy) and the reasons difference loss
(equation 4)—adding both summands with equal weight—, while we train the comparison
model with only the usual loss. We use the same batches for both models, with a batch
size of 1024, again using AdamW [32]. We do this for both the 25k task and the 50k task,
and we repeat each 100 times. Figure 16 shows the results.
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Figure 15: F1 scores for different models for the two fairness tasks.

Figure 16: Improving fairness through reasons training. The metrics are: accuracy (Acc),
F1 score (F1), disparate impact (DI), equality of opportunity (EoO), reasons
difference (RD). Note the logarithmic scale.
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C. Experiment 3: Reasons in LLMs

Setup We use the nnsight library [14] to load the model Qwen2.5-0.5B-Instruct and
to access its residual stream.12 We use the popular Stanford Sentiment Treebank dataset
SST2 [47].13

Prompt-template world construction Given a sentence s from the SST2 training dataset,
we form the following few-shot prompt:

Input: This was a truly amazing movie.
Classify the sentiment of the message: positive

Input: One of the worst films I saw lately.
Classify the sentiment of the message: negative

Input: {s}

Classify the sentiment of the message:

Prompt-template sentiment classification Given a sentence s from the SST2 validation
dataset, we form the following few-shot prompt:

You have to classify sentences as either ’positive’ or ’negative’.

Input: This was a thought-provoking movie
The sentiment of the message is:
a) positive
b) negative
Answer: a)

Input: rather mixed acting with a mediocre story line
The sentiment of the message is:
a) positive
b) negative
Answer: b)

Input: feel-good story with rich characters
The sentiment of the message is:
a) positive
b) negative
Answer: a)

Input: {s}

The sentiment of the message is:

12Available at https://nnsight.net/ under the MIT license.
13Available at https://huggingface.co/datasets/stanfordnlp/sst2.
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Figure 17: Sentiment statistics when generating 100 responses to the prompt ‘What do you
think of the movie Titanic? Would you recommend watching it? Why or why
not?’.

a) positive
b) negative
Answer:

Sentiment statistics for generation We consider the prompt ‘What do you think of the
movie Titanic? Would you recommend watching it? Why or why not?’. We generate
output with the model first as is (‘Original output’), then with a positive intervention
(‘Positive interv.’) and then with a negative intervention (‘Negative interv.’). The positive
(resp., negative) intervention sets the 5 neurons speaking most for positivity (resp., nega-
tivity) to a ′ = 2m (resp., a ′ = 20m) and the 5 neurons speaking most against positivity
(resp., negativity) to a ′ = m (resp., a ′ = m). To test for statistical variance, we generate
these outputs 100 times. For each output, we measure, using the NLTK SentimentIntensity-
Analyzer, both its positivity score and its negativity score.14 Figure 17 shows the mean and
standard deviation of these scores. In figure 5 (right) in the main text, we saw qualitatively
that the generated output changes according to the positive or negative intervention. But
now we can also see quantitatively that the positive intervention generates outputs with
higher positivity scores than the original model, and the negative intervention generates
outputs with higher negativity scores than the original model.

D. Compute

All experiments are performed using a regular laptop (CPU with 16 GB memory). The
majority of experiments take less than 20 minutes, with a few experiments taking a couple
of hours. Initial experiments included approximately 10 days of compute time on the
aforementioned setup.
14Available at https://www.nltk.org/index.html under the Apache-2.0 license.
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