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Lots of things are usefully modelled in science as dynamical systems: growing popula-
tions, flocking birds, engineering apparatus, cognitive agents, distant galaxies, Turing
machines, neural networks. We argue that relevant logic is ideal for reasoning about
dynamical systems, including interactions with the system through perturbations.
Thus dynamical systems provide a new applied interpretation of the abstract Routley-
Meyer semantics for relevant logic: the worlds in the model are the states of the
system, while the (in)famous ternary relation is a combination of perturbation and
evolution in the system. Conversely, the logic of the relevant conditional provides
sound and complete laws of dynamical systems.

1. Introduction
Really to understand the workings of a system (be it physical, biologi-
cal, social, economical or computational), we shouldn’t limit ourselves
to observing it: we should also interact with it. We may want to know
the effects of administering a certain medication; understand the conse-
quences of implementing a certain tax policy in a society; test how a new
material reacts to certain chemicals; check whether an artificial neural
network behaves as intended on slightly different inputs. In each case,
we wonder about the truth-value of conditionals of the form:

(1) Whenever we perturb the system from its current state into a
state where 𝜑, it will then evolve into a state where 𝜓.

Such perturbation conditionals, when true, can be regarded as laws de-
scribing the behaviour of the system: that 𝜑 is followed by 𝜓. Knowing
such laws matters for the explanation and interpretation of the system,
for the scientific goal of predicting how the system may behave, but also
for the technological goal of verifying that the system robustly behaves
as we want it to.
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2 Hornischer and Berto

Causal models provide a well-known approach to perturbation con-
ditionals (for example, Pearl 2009; Hitchcock 2023): systems are repre-
sented as so-called structural causal models. Perturbations are formal-
ized as interventions changing such models. Perturbation conditionals
are then taken as structural counterfactuals: ‘If 𝜑 were made true by an
intervention, then 𝜓 would be true.’ This gives a semantics to pertur-
bation conditionals; there is quite some discussion of their logic (for
example, Galles and Pearl 1998; Halpern 2000; Briggs 2012; Zhang 2013;
Ibeling and Icard 2020). We will pursue a different and novel approach
to perturbation conditionals, giving a logic and a semantics for them:
we will analyse systems as dynamical systems, and their logic will turn
out to be relevant logic. We don’t oppose the causal model approach,
but rather develop a different and we hope enlightening perspective on
perturbation conditionals.

Our own view gets off the ground by observing that we can rephrase
the perturbation conditional (1) as:

(2) For all states y and z of the system, if there is a perturbation
moving the system from its current state x to y from which it
evolves to z, then if 𝜑 holds at y, then 𝜓 holds at z.

This says that a certain conditional—let’s write it as ‘𝜑 ⇝ 𝜓’—holds at
the current state x of the system. Let’s write this as ‘x ⊨ 𝜑 ⇝ 𝜓’. Then we
take a ternary relation on the states of the system, Rxyz: ‘A perturbation
changes the system from state x to y, from which it evolves to z.’ With
this notation, we can further rephrase (1)—that is, x ⊨ 𝜑 ⇝ 𝜓—as

(3) For all states y and z with Rxyz, if y ⊨ 𝜑, then z ⊨ 𝜓.

Now, these are precisely the truth conditions for the conditional in rel-
evant logic, under its widely discussed—and (in)famously abstract—
Routley-Meyer semantics (Routley and Meyer 1972a, 1972b, 1973;
Routley 1979). We will work out this key idea as a precise seman-
tics of perturbation conditionals, whose sound and complete logic is
axiomatized by relevant logic.

That a non-classical logic—one postulating situations where the law
of self-implication 𝜑 → 𝜑 can fail!—should be the logic of dynamical
systems is explained by our interpretation of the conditional in terms
of perturbation and evolution. It might well be that we perturb a state
x to a state where 𝜑 is true (say, mitigating pain by taking painkillers),
but then the system evolves into a state where 𝜑 is no longer true (the
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The Logic of Dynamical Systems Is Relevant 3

pain coming back when the painkillers wear off), so x doesn’t make true
𝜑 ⇝ 𝜑. Besides addressing perturbation conditionals, this will also deal
with a long-standing open problem: providing an applied interpretation
of the abstract Routley-Meyer semantics. Relevant logic turns out to be
the logic of dynamical systems, and the logic of relevant conditionals
turns out to be the logic of the laws governing dynamical systems.

Experts in either dynamical systems or relevant logic may not know
much about the other, so we provide very short introductions to both.
We first briefly outline relevant logic (§2) and its Routley-Meyer seman-
tics (§3). §4makes sense of its treatment of negation, and §5 sketches the
struggles so far in interpreting its abstract ternary relation.We then turn
to dynamical systems: in §6, we give an informal introduction, which
we formalize (including a notion of perturbation) in §7. §8 shows how
this gives rise to a Routley-Meyer model and thus gives a semantics for
a logic of dynamical systems including perturbation conditionals. §9
shows that, conversely, every Routley-Meyer model arises, up to equiv-
alence, from a dynamical system. This gives the desired soundness and
completeness results. §10 then investigates this bridge between systems
and logics by starting to explore how certain subclasses of systems are
characterized by certain logical axioms. We conclude in §11.

2. Relevant logic
Relevant logic was developed to capture a notion of conditionality free
from the paradoxes of the material and strict conditionals listed in
figure 1.These offend our sense that a conditional should only holdwhen
its antecedent has some connection to its consequent; otherwise, what-
ever grounds the truth of the former cannot be transmitted to the latter.
‘If snow is white, then if the moon is made of green cheese, then snow is
white’, an instance of 1 below, seems tomake snow’s whiteness depend on
a silly falsehood, given only that snow is white; ‘If Aidan doesn’t smoke,
then if he does the Earth will implode’, an instance of 2 below, seems
to make the end of life on Earth depend on Aidan’s smoking, given only
that he doesn’t. Even if one interprets the conditional as strict ormodally

Fig. 1 The paradoxes of the material and strict conditionals
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4 Hornischer and Berto

Fig. 2 The relevant logic B+

qualified, this is not enough for 3 to 5 above: ‘If Midori is happy, then
if grass is green, then grass is green’, an instance of 3 above, seems to
relate the fate of self-implication to Midori’s mood. ‘If I’m a monkey’s
uncle, then either 2 is prime or it’s composite’ seems to make a neces-
sary truth depend on one’s having primates of other species as relatives.
However, in normal modal logic, the consequents of 3 and 4 above fail
in no possible scenario.

Anderson and Belnap (1975) held as a necessary condition for a
conditional 𝜑 → 𝜓 to be valid, or a theorem, that 𝜑 and 𝜓 share some
sentential variable, thus capturing syntactically the idea of a connection
between antecedent and consequent. This was called the Variable Shar-
ing Property (VSP) (Dunn and Restall 2002, p. 27). Anderson and Bel-
nap first came up with proof-theoretic logical systems ensuring that no
conditional would count as a theorem unless it had the VSP.1 Take a sen-
tential language with a countable set At of atoms p1, p2, …, negation ¬,
conjunction∧, disjunction∨, conditional→.Weuse𝜑,𝜓,𝜒, 𝜃, 𝜑1, 𝜑2, …
as meta-variables for formulae. The well-formed formulae are the atoms
and, if 𝜑 and 𝜓 are well-formed, so are ¬𝜑, (𝜑 ∧ 𝜓), (𝜑 ∨ 𝜓), (𝜑 → 𝜓).
(We will normally omit the outermost parentheses; a biconditional ↔
can be defined using → and ∧ in the usual way.) The axioms and rules
of the basic positive relevant logic B+ are given in figure 2.

One can add to the positive logic principles for negation such as:

1 As well as the idea of ‘content connection’, there’s another informal idea at the origins of
the Anderson-Belnap relevant tradition: that of ‘making real use’ of assumptions. What’s bad, for
instance, with paradox, is that if 𝜑 is already given, 𝜓 is really doing nothing to get us to infer 𝜑.
We don’t much talk of this other informal idea as it becomes relevant only if one sees relevance
proof-theoretically (compare Dunn and Restall 2002), whereas we have a models-first approach.
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The Logic of Dynamical Systems Is Relevant 5

(A7) ¬(𝜑 ∨ 𝜓)↔ (¬𝜑 ∧ ¬𝜓)
(A8) ¬(𝜑 ∧ 𝜓)↔ (¬𝜑 ∨ ¬𝜓)
(A9) 𝜑 ↔ ¬¬𝜑
(R4) 𝜑 → 𝜓 ⊢ ¬𝜓 → ¬𝜑.

The following extensions of B+ are often considered:

BM = B+ + (A7–8) + (R4) B = BM + (A9)

System B was taken as the basic relevant logic. There are stronger rele-
vant systems; one of Anderson and Belnap’s favourite ones is called R,
which we’ll talk about in §10. Until then, we will be concerned with the
basic (positive) relevant logic.

3. The Routley-Meyer semantics
The issue of finding a semantics entered the relevantist agenda early on:

Yea, every year or so Anderson&Belnap turned out a new logic, and
they did call it E, or R, or EI, or P −W, and they beheld such logic,
and they were called relevant. And these logics were looked upon
with favor by many, for they captureth the intuitions, but by many
they were scorned, in that they hadeth no semantics. Word that An-
derson & Belnap had made a logic without semantics leaked out.
Some thought it wondrous and rejoiced, that the One True Logic
should make its appearance among us in the Form of Pure Syntax,
unencumbered by all that set-theoretical garbage. Others said that
relevant logics were Mere Syntax. (Routley and Meyer 1973, p. 194)

Initial algebraic semantics based on De Morgan lattices didn’t
seem too enlightening: they looked like pure, not applied, semantics
(Carnap 1948; Dummett 1973; Plantinga 1974). Pure semantics con-
sists of mathematical structures that interpret the formal language but
are themselves uninterpreted. Applied semantics concerns the inter-
pretation of the mathematical structures as representing something we
already have some independent grasp of.

The frame semantics developed by Routley and Routley (1972) and
Routley and Meyer (1972a, 1972b, 1973) seemed similar enough to
Kripke or possible worlds semantics for modal logic to warrant opti-
mism on a plausible interpretation. First let’s see what a core issue was:
paradoxes like 3 to 4 in figure 1 are conditionals featuring (classical and
normal modal) logical truths in their consequent or falsities in their
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6 Hornischer and Berto

antecedent. These are supposed to hold everywhere and, respectively,
nowhere in logical space. Then where can we find situations falsifying
the former, or verifying the latter, while at the same time retaining their
status as logical truths and falsities? Routley and Meyer addressed the
issue by resorting to situations different from classically possible worlds.
To see how these work, we will introduce (a small variation on) the sim-
plified semantics for relevant logics due to Priest and Sylvan (1992) and
Restall (1993); this is easier to work with and has become somewhat
canonical after being adopted in Priest’s (2008) classic textbook.

A relevantmodel for the language above is a tupleM = (W, 0,R,C, i),
where:

W is a set of worlds
0 ∈ W is the base world
R ⊆ W3 is a ternary relation
C ⊆ W2 is a binary relation
i ∶ W× At → {1, 0} is an interpretation function

such that, for all x, y ∈ W:
R0xy if and only if x = y. (1)

This is called the normality condition; whether in the original Routley-
Meyer semantics or in the Priest-Sylvan-Restall simplified variant, it
makes for a standard way of marking a difference between the normal or
base world (or worlds) and other worlds in the models (see Priest 2008,
pp. 189–90 for discussion). The truth clauses go as follows. (In the met-
alanguage we use x, y, z, x1, x2, …, ranging over worlds; ⇒,⇔,∧,&, ∃,
with the usual reading; and /⊩ for ‘not⊩’.)

(At) M, x ⊩ p ⇔ i(x, p) = 1
(¬) M, x ⊩ ¬𝜑 ⇔ ∀y ∈ W(xCy ⇒ y ⊮ 𝜑)
(∧) M, x ⊩ 𝜑 ∧ 𝜓 ⇔ M, x ⊩ 𝜑 &M, x ⊩ 𝜓
(∨) M, x ⊩ 𝜑∨𝜓 ⇔ M, x ⊩ 𝜑 or M, x ⊩ 𝜓
(→) M, x ⊩ 𝜑→ 𝜓⇔ ∀y, z ∈ W(Rxyz & y ⊩ 𝜑 ⇒ z ⊩ 𝜓)

We’ll omit reference to M when this is clear from context. Logical conse-
quence is truth preservation at the base world in all models; with Σ a set
of formulae:

Σ ⊨ 𝜑 ⇔ for all M: M, 0 ⊩ 𝜓 for all 𝜓 ∈ Σ ⇒ M, 0 ⊩ 𝜑.2

2 This is the textbook definition (for example, Priest 2008, §10.2.6). Many thanks to an anony-
mous referee for mentioning a discussion of Anderson, Belnap and Dunn (1992, p. 196). They
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The Logic of Dynamical Systems Is Relevant 7

Logical truth,⊨ 𝜑, is entailment by the empty set: truth at the base world
in all models.

We’ll call positive the models where we take away C and forget about
the truth conditions for negation. The logic B+ is (strongly) sound and
complete with respect to the class of positive models (Priest and Sylvan
1992). We’ll call ordered the models M = (W, 0,R,C, ≤, i) with a partial
ordering≤ on W which is hereditary or preservation: if x ⊩ 𝜑 and x ≤ y,
then y ⊩ 𝜑.3 One can then regard unordered models as those where the
order is the identity relation (known as discrete order).

We called the points in W ‘worlds’, but they’re not classically possi-
ble worlds. Let’s check how the semantics invalidates paradoxes 3 to 5
of figure 1. Consider the model M = (W, 0,R,C, i), consisting of four
distinct worlds, say W = {0, a, b, c}, a relation R where only R0ww (for
w ∈ W) and Rabc hold, a compatibility relation with only aCb, and an
interpretation where only p is true at a and q at b. Then

• 0 ⊮ p → (q → q) because a ⊩ p but a ⊮ q → q (since Rabc,
b ⊩ q, but c /⊩ q),

• 0 /⊩ p → (q ∨ ¬q) because a ⊩ p but a /⊩ q ∨ ¬q (since a /⊩ q
and a /⊩ ¬q for aCb and b ⊩ q), and

• 0 ⊮ (p ∧ ¬p)→ q because a ⊩ p ∧¬p (since a ⊩ p and a ⊩ ¬p
for if aCw, then w = b, and b /⊩ p) but a /⊩ q.

The semantics validates 𝜑 → 𝜑: it is true at the base world 0 in any
model M, because if R0xy and x ⊩ 𝜑, then also y ⊩ 𝜑 since x = y.
Self-implication can only fail at non-base worlds. (Note that: the base
world is special in this respect—and rightly so: we’ll get back to this.)

Thus 3 to 5 are invalidated thanks to points of evaluation which
can fail self-implication, can be locally inconsistent (making true both
a formula and its negation), and can be incomplete (making true nei-
ther). So they cannot represent classically possible worlds. What things
can they represent, then, such that the relations R and C between such

call this definition the ‘official’ consequence to stress that it itself is not a relevant consequence:
the⇒ is not a relevant conditional in the metalanguage, but the usual notion of entailment in our
classical metalanguage. This definition affords the strong version of soundness and completeness
(see the next paragraph) and is in line with the common convention of using a classical metalan-
guage when discussing a non-classical logical system. It seems particularly suitable in our case
where we claim that dynamical systems—standard objects in classical mathematics—provide an
interpretation to the specific logical system of relevant logic.

3 Sometimes they are defined differently (for example, Restall 1993, p. 498): ≤ is a binary re-
lation (containment), required to satisfy some easy-to-check properties that precisely ensure the
desired heredity condition.
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8 Hornischer and Berto

things, which give the truth conditions for the conditional and negation,
make sense? That’s what an applied semantics has to answer.

4. Negation and (in)compatibility
For C, we don’t even need to be specific on the nature of the things.
That’s because there’s a tradition, dating back at least to the Birkhoff-
vonNeumann-Goldblatt characterization of ortho-negation in quantum
logic (Birkhoff and von Neumann 1936; Goldblatt 1974), and developed
by Došen (1986), Dunn (1993), Restall (1999), Berto (2015), Berto and
Restall (2018), and many others, accounting for the meaning of nega-
tion via the fundamental notions of compatibility and its polar opposite,
incompatibility or exclusion. And incompatibility is so basic to (our ex-
perience of) the world (Kinkaid 2020) that it’s easy to make sense of it as
holding between the most diverse kinds of things.4 So just take ‘xCy’ as
saying that x and y are compatible.Then (¬) has it that¬𝜑holds at a point
if and only if𝜑 fails at all compatible points. Using incompatibility I, that
is, the complement of compatibility C, one could equivalently opt for

(¬) M, x ⊩ ¬𝜑 ⇔ ∀y ∈ W(y ⊩ 𝜑 ⇒ xIy).

So ¬𝜑 holds at a point if and only if any point where 𝜑 holds is in-
compatible with it. Points in W making true formulae, then, could be
(in)compatible due to properties of the objects that exist at them; or
to states of affairs that obtain at them, or to the states of affairs they
themselves are; or to propositions they support or include; or to pieces
of information or evidence they convey; or whatnot. The setting makes
plain intuitive sense of the meaning of negation, because we utter nega-
tions to exclude things or express incompatibilities (Price 1990; Restall
1993; Mares 2004; Kinkaid 2020). By imposing conditions on C, one can
validate various principles involving negation. Here are three:

4 For instance, one could see it as a relation between features of objects: being square rules out
being circular; being prime rules out being composite; being entirely located here rules out being
entirely located over there at the same time. Or it could hold between states of affairs: the ball’s
being red all over rules out its being blue all over; this number’s being prime rules out its being
composite; the table’s being wholly in the garden rules out its being wholly in the kitchen. Or it
could hold between the corresponding propositions: that one is in the garden rules out that one
is in the kitchen; and so on. Or it could hold between pieces of information, or of evidence, or
whatnot. See Berto (2015), whose metaphysical story is summarized in this footnote.
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The Logic of Dynamical Systems Is Relevant 9

∀xy(xCy ⇒ yCx) (Symmetry)
∀x∃y(xCy) (Seriality)
∀x(∃y(xCy)⇒ ∃z(xCz & ∀w(xCw ⇒ w ≤ z)) (Convergence)

It seems natural that (in)compatibility should be serial and symmet-
ric (for some reasons why, see Restall 1999 and Berto 2015); we’ll get
back to symmetry whenwe discuss our interpretation via dynamical sys-
tems). What convergence essentially does is guarantee that each world
has a maximally compatible mate if it is compatible with anything at all.
If one buys these conditions, each x ∈ Wwill have amaximal compatible
mate x∗, and (¬) becomes equivalent to

(¬∗) M, x ⊩ ¬𝜑 ⇔ M, x∗⊮ 𝜑.

Say a star-ordered model is an ordered model satisfying symmetry,
seriality and convergence. One can also take the star operation as prim-
itive: a star model, then, is M = (W, 0,R,∗, i), with the truth conditions
for negation given directly as per (¬∗). The above story, however, shows
how the star operation arises naturally from compatibility and order: see
again Restall (1999).

The relevant logic BM is sound and complete with respect to star
models (Priest and Sylvan 1992). If we additionally impose the condi-
tion x = x∗∗, we get Routley star models, with respect to which the logic
B is sound and complete (Priest and Sylvan 1992). Such an involutive (or
period-two) star operation was used in the original (Routley and Rout-
ley 1972; Routley andMeyer 1972a) to give the semantics for negation—
called the Routley star.

One may not like the idea that the base world, where logical truth
and validity are recorded, could be inconsistent or incomplete. In the
Routley star setting, one can accommodate the worry by stipulating that
0∗ = 0, which ensures that negation behaves classically at 0: exactly one
of 𝜑 and ¬𝜑 will be true there, for all 𝜑. This gives a logic stronger than
B, but all the counterexamples to the paradoxes still go through.

Making sense of the ternary R is considerably more work.

5. The ternary relation
A number of interpretations understand the points in W as states of
or conduits for information, and the ternary relation in terms of infor-
mation transmission (Urquhart 1972; Restall 1995; Mares 2004; Beall
et al. 2012; Tedder 2021; Golan 2023). Both Restall and Mares take the
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10 Hornischer and Berto

points to represent situations in the sense of Barwise and Perry’s (1983)
situation semantics. These are information-supporting structures that
need not be maximal, as they can fail to support either positive or neg-
ative information about certain topics. The current meteorological sit-
uation in Oxford does not support the information that it’s raining in
New Jersey, nor that it isn’t raining there. Situations can also be taken
as abstract objects representing logical impossibilities, and have been
developed by Barwise and Seligman (1997) into a general theory of in-
formation flow in distributed systems. The partial ordering in enriched
models is then understood as information inclusion: ‘x ≤ y’ means that
all the information supported by x is also supported by y. One may also
have an (idempotent, commutative, associative) operation of fusion,⊕,
the pooling together of pieces of information, and define information
inclusion out of it, in the usual way, as x ≤ y =df x⊕ y = y.

Then one can read ‘Rxyz’ as saying that x is a situation that acts as
a conduit of information, allowing it to be transmitted from situation y
to situation z. This makes sense of the truth conditions for the relevant
conditional, as per (→): when x allows the information that 𝜑 → 𝜓 to
flow from y to z, and y supports the information that 𝜑, then z should
support the information that 𝜓.

Here is one thing ‘Rxyz’ cannot mean in the information-theoretic
reading (Dunn and Restall 2002; Priest 2008): it cannot just mean that z
is or includes the information obtained by pooling together x and y, that
is, x⊕ y ≤ z. This would make 𝜓 → 𝜓 true at all points x (if Rxyz and
y ⊩ 𝜓, then y ≤ x⊕ y ≤ z, and so, by preservation, also z ⊩ 𝜓), hence
paradox 3 is validated.This complicates the informational interpretation
of R: ‘x allows information to flow from y to z’ cannot be understood in
the plain mereological terms that fusing y to x yields a result in z, since
preservation must fail: Rxyz cannot imply that y is informationally con-
tained in z. As Priest (2008, p. 207) has it, ‘The problem now is to make
sense of the metaphor of information flow—hardly a transparent one’.

To show how R makes sense in our setting in spite of failures of
preservation, let us now introduce dynamical systems.5

6. Dynamical systems, informally
A dynamical system consists of a state space and a dynamics on it. The
former is the collection of states that the system can be in; the latter rep-
resents how the system evolves fromone state to another (List and Pivato

5 For an early version of this idea, see Hornischer (2021, §3.6.2).
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The Logic of Dynamical Systems Is Relevant 11

2021). Lots of things can then be seen as a dynamical system: gases inmo-
tion, agents in financial markets, computers. Let us consider a standard
textbook example (Strogatz 2015, §§2.3, 10.2; May 1976).

Example a (Population growth). A population of insects breed
seasonally without overlapping generations. A state of this system
is, for our purposes, described by the number of insects that the
system has in this state. It will be convenient to describe the state
by the percentage of the maximal population. We will freely iden-
tify a percentage p with the number p/100 between 0 and 1. Thus,
a state of the system is given by a number x between 0 and 1. We
want to understandhow this evolves over time, that is, over the sea-
sons.When there are few insects (x is close to 0), therewill bemore
in the next generation: the available resources plentifully support
the few. However, when there are many insects (x is close to 1),
there will be fewer in the next generation: the available resources
don’t support the many. To model this, we look for a function T
that, when given the current state x as input, describes the popu-
lation T(x) in the next season. We will describe this function T in
the next section.

Dynamical systems can have a discrete or continuous state space.
Our population example with absolute numbers as states would be dis-
crete, but by taking percentages as states it is continuous. Systems can
be time-discrete, when they develop in discrete time steps, or time-
continuous, when subject to continuous change. Our population exam-
ple is time-discrete. And systems can be deterministic, when each state
has a unique successor; non-deterministic or stochastic, when that’s not
the case. The implicit assumption in modelling our population dynam-
ics as a function is that it is deterministic: for every current state x, there
is a unique next state T(x).

Let’s end this section with three more examples.
First, a gas in a box can be a time- and state-continuous determin-

istic dynamical system: a state of the system is given by the position
and momentum of each gas molecule in the box. The dynamics is given
by the laws of motion of classical mechanics. This type of example is
extremely general: differential equations are the language of physics,
chemistry, engineering, and many other sciences, and any solution to
a differential equation yields such a dynamical system (for details, see
Teschl 2012, §6.2).

Second, Turingmachines are time- and state-discrete dynamical sys-
tems: a state of a Turingmachine at a time is given bywhat’s written on its
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12 Hornischer and Berto

tape, the part of the tape themachine is scanning at the time, and its inter-
nal state. The dynamics are given by the program of the machine, fixing
the next state (or one of the possible next states, if it’s non-deterministic)
given what the machine is reading at the current state and its current
internal state.

Third, training artificial neural networks is a time-discrete, state-
continuous dynamical system. A state describes the weights of all the
connections in the network. And the new set of weights is computed, for
example, from a batch of data points: the network’s output on the data
is compared to what should be the correct output according to the data;
then the weights are adjusted (using the back-propagation algorithm)
so as to provide outputs closer to the correct ones. Since the batch is
sampled randomly, the dynamics are non-deterministic.

7. Dynamical systems, formally
There are many formal notions of a deterministic system, differing in
mathematical structure and dynamics. They all are so-called (left) ac-
tions 𝛼 of amonoid (M,+, 0) on a set X. Here X describes the state space
of the system, themonoid describes the notion of time, and the function
𝛼 ∶ M × X → X describes the dynamics: ‘If the system is in state x ∈ X
now, then after time m ∈ M, the system is in state 𝛼(m, x)’ (so one re-
quires 𝛼(0, x) = x and 𝛼(m+n, x) = 𝛼(m, 𝛼(n, x))). A time-continuous
system would use as monoid the real numbers (ℝ,+, 0), while a time-
discrete system would use the natural numbers (ℕ,+, 0). In the time-
discrete case, the dynamics is already described by the ‘1-step dynamics’
T = 𝛼(1, ⋅) ∶ X→ X mapping each state to the next state, because

𝛼(0, x) = x, 𝛼(1, x) = T(x), 𝛼(2, x) = T(T(x)), …

If the state space X is continuous, one formalizes this by assuming it to
be a topological space or a probability space and by requiring the dy-
namics to preserve this additional structure (that is, being continuous
or measure-preserving, respectively).

Among the main classes of systems that dynamical systems theory
studies are the so-called topological systems. These are state-continuous
and time-discrete deterministic systems. Historically they became im-
portant through the work of Poincaré because they allowed for the
analysis of solutions to differential equations in the absence of ex-
plicit solutions (which is most often the case). The formal definition is
taken from the excellent textbook by de Vries (2014, p. 1). The precise
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The Logic of Dynamical Systems Is Relevant 13

definitions of mathematical terms are added as footnotes, but an intu-
itive understanding should be enough for us.

Definition 1. A topological system is a pair (X,T) where X is a
Hausdorff topological space and T ∶ X → X is continuous.6 Some-
times it is additionally assumed that X is compact and that f is
bijective—if this is the case, we call (X,T) a standard topological
system.

Here is what this formal definition looks like for our running example.

Example b (Example a continued). Our example system is a popu-
lation of insects. Its states are given by numbers x between 0 and 1
describing the percentage of the maximal population. So the state
space is the unit interval X ∶= [0, 1] with its usual topology. For
the function T ∶ X → X describing the dynamics we required an
increase when x is small and a decrease when x is large. Famously,
the logistic map does this:7

T(x) ∶= 2x(1 − x).

This is visualized in figure 3. For small x (with x < 0.5), the pop-
ulation will increase (T(x) is above the dotted line), unless there
weren’t any insects to start with (that is, unless x = 0, in which
case T(x) = 0). For large x (with x > 0.5), the population will de-
crease (T(x) is below the dotted line). For x = 0.5, the population
remains stable: T(x) = x (the population is in equilibrium). For
the extreme points x = 0 (no population), we also have T(x) = x;
and for x = 1 (maximal population), we haveT(x) = 0 (no popula-
tion). So x = 0 and x = 0.5 are the only fixed points (that is, points
x with T(x) = x). But only x = 0.5 is attracting: any 0 < x < 1 con-
verges under T to 0.5. Thus, we have a clear idea of the long-term
dynamics.

6 A topological space is a set X together with a set 𝜏 of subsets of X that contains X and the
empty set ∅ and is closed under finite intersection and arbitrary union. The elements of X are
called points and the elements of 𝜏 are called open sets. Complements of open sets are called closed.
A topological space X is Hausdorff if, for any two distinct points x and y in X, there are disjoint
open sets U and V with x ∈ U and y ∈ V. We often only refer to the space as X and take 𝜏 to be
given by context. A function f ∶ X → Y between two topological spaces is continuous if for any
open set V of Y, the preimage f−1(V) = {x ∈ X ∶ f(x) ∈ V} is an open set of X.

7 Instead of 2, we could choose another constant 0 ≤ r ≤ 4. For r ≤ 2, the dynamics is
quite stable (which we choose here to keep things simple), but for values r > 2 it can become
mesmerizingly complex (May 1976).
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14 Hornischer and Berto

Fig. 3 The dynamics of the logistic map on the unit interval.

To explicate when a perturbation conditional is true at a state, we
need tomake somemore structure explicit: what it means to perturb the
system, and what it means that a property holds at a state or doesn’t hold
(that is, the state is incompatible with it). We call the resulting structure
an interactive topological system:

Definition 2. An interactive topological system S is a tuple
(X, x0,T,A,P,C, i) where:

• X is a Hausdorff topological space: the state space.
• x0 ∈ X is a state: the initial state.
• T ∶ X→ X is a continuous function: the dynamics.
• A is a topological space: the space of perturbations.
• P ∶ X × A ⇉ X is a multifunction (that is, a function

that maps each element of its domain X × A to a sub-
set of its codomain X): the perturbation function. We
require F to be ‘appropriately continuous’, which here
means closed-valued, upper hemicontinuous, and with
closed domain.8

• C ⊆ X2 is a binary relation: the compatibility relation.
• i ∶ X × At → {0, 1} is a function: the interpretation

function.

We call S standard if X is a compact Hausdorff space and T is bi-
jective (hence a homeomorphism).We call S simplified if A = X. A

8 Recall from set-valued analysis (Aliprantis and Border 2006, ch. 17) that a multifunction
F ∶ X ⇉ Y on topological spaces X and Y is closed-valued if each F(x) is a closed subset of Y,
and F has a closed domain if {x ∈ X ∶ F(x) ≠ ∅} is a closed subset of X. Finally, F is upper
hemicontinuous if, for all x ∈ X and open V ⊆ Y with F(x) ⊆ V, there is an open U ⊆ X with
x ∈ U and, for all x′ ∈ U, we have F(x′) ⊆ V. To apply this to the perturbation function P, we
take the product topology on X×A (the least topology where all U×V are open for U ⊆ X open
and V ⊆ A open).
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The Logic of Dynamical Systems Is Relevant 15

positive interactive topological system is defined in the same way
but without the compatibility relation.

Let’s explain the parts of the definition in turn and then consider it
for our running example. The part (X,T) just describes the underlying
topological system. Distinguishing a state x0 ∈ X is typical in dynami-
cal systems theory: it fixes the current state of the system, starting from
which it is analysed (for example, the initial condition in an initial value
problem whose solution is the dynamical system).

The interpretation function i allows us to speak about properties
of the system. In our insect population system, consider p representing
‘The population is highly, but not extremely populated’. So p is true at a
state x according to i (that is, i(x, p) = 1) if and only if, say, 0.7 < x < 0.9;
that is, the insect population is above 70% of the maximal population
but below 90%.

The compatibility relation is to express what itmeans that the system
currently doesnot have property p. Following §4: not having pmeans not
being compatible with any state having p. If we take C to be the identity
relation, we can recover the classical reading where state x not having
property p means i(x, p) = 0. But for a more constructive reading we
can also take C to be indistinguishability by the available measurements.
Then state x does not have property p if and only if we can conclusively
show that the system currently does not have p, because p fails in all the
states that, based on our observations, the system could be in. For exam-
ple, in our insect population, we can plausibly only measure the number
of insects up to a 5% error of measurement, so x does not have property
p if and only if for no 𝜖with −0.05 ≤ 𝜖 ≤ +0.05, we have 0.7 < x+𝜖 < 0.9
(that is, x ≤ 0.65 or x ≥ 0.95). There are yet further options: for example,
x is compatible with y if y can be obtained from x with a small pertur-
bation, which need not even be reflexive or symmetric. So generally we
just assume C to be a binary relation.

Finally, the perturbation function says: if the system is in state x ∈ X
and perturbation a ∈ A acts on the system from the outside, it will per-
turb the system into a state in P(x, a). In our running example, a could
be the action of adding onemillion insects which, say, is 10% of themaxi-
mal population. The reason we don’t assume P to be a function, but only
a multifunction, is that perturbations usually are not infinitely precise:
if we apply perturbation a to the system in state x, we usually cannot
guarantee a unique resulting state P(x, a) but only a ‘ballpark’ of states
P(x, a) ⊆ X. In the example, it wouldn’t be feasible to count that it was
precisely 10% of the maximal population that we added: it could also
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16 Hornischer and Berto

have been 1% more or less, so P(x, a) = {y ∈ [0, 1] ∶ x + 0.09 ≤ y ≤
x + 0.11}.

We should expect the perturbations to interact with the spatial struc-
ture of the system: if we change the current state x or perturbation a by
a bit, then the resulting states P(x, a) should also only change a bit. If
P were a function, this would precisely be achieved by requiring P to
be continuous. But since P is a multifunction, the next best thing is to
assume it to be appropriately continuous in the technical sense above.9

Requiring the system to be simplified is motivated thus: although
perturbations are not states, we can often identify the two (Leitgeb 2005).
For example, the perturbation of adding 10% of the maximal population
can be identified with the state x = 0.10.

In sum, here is our running example as an interactive topological
system.

Example c (Example b continued). In our insect population sys-
tem, we have:

• The state spaceX = [0, 1] of possible percentages of the
maximal population.

• The initial state, say, x0 = 0.6.
• The population dynamics T ∶ X → X given by T(x) =

2x(1 − x).
• The space of perturbation A ∶= [0, 1] describing how

many insects we externally add to the population,mea-
sured as a percentage of the maximal population.

• The perturbation function P ∶ X×A ⇉ X given by

P(x, a) = {y ∈ [0, 1] ∶ x+ a− 0.01 ≤ y ≤ x+ a+ 0.01}.
• The compatibility relation xCy given by ∣x − y∣ ≤ 0.05.

We consider p representing ‘The population is highly populated’
and q representing ‘The population is healthy’, and no further
properties. So we define the interpretation function i ∶ X× At →

9 Are perturbations just any kind of state change, a helpful referee asks? We think it’s not
up to the formal semantics to further constrain what counts as a perturbation. Even a fixed dy-
namical system will be amenable to very different sorts of perturbation (compare, for instance,
example and below). What’s up to the semantics is to represent the structural properties shared
by all sorts of perturbation: these are the conditions we impose on P. This is analogous to Kripke
models: they represent the informal idea that y is a possibility for x as a binary relationRxy. Again,
this captures the structural properties that any instance of the informal notion shares, but it does
not answer which worlds exactly are possibilities for, say, our actual world.

Mind, Vol. XX . XX . XXXXXXX 2025 © Hornischer and Berto 2025

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/advance-article/doi/10.1093/m
ind/fzaf012/8151907 by guest on 28 M

ay 2025



The Logic of Dynamical Systems Is Relevant 17

{0, 1} as (given a state x ∈ X): i(x, p) = 1 if and only if 0.7 < x <
0.9, and i(x, q) = 1 if and only if 0.4 < x < 0.6; and i(x, r) = 0 for
all other atomic sentences r.

8. Logic of dynamical systems: interpreting relevant models
We can now provide a semantics for perturbation conditionals as well
as for the other connectives ∧,∨,¬; so we can speak of a logic of dynam-
ical systems.10 The intuitive interpretation goes thus: atomic sentences
represent basic properties of the system; as for the complex properties:

• The property 𝜑∧𝜓 holds at a state if and only if both the property
𝜑 and the property 𝜓 hold at that state.

• The property𝜑∨𝜓 holds at a state if and only if either the property
𝜑 or the property 𝜓 holds at that state.

• The property ¬𝜑 holds at a state if and only if 𝜑 fails at all states
that are compatible with that state (for instance, observationally
indistinguishable).

• The property𝜑 ⇝ 𝜓 holds at a state if and only if whenever we per-
turb the system from that state into a 𝜑-state, it will evolve into a
𝜓-state.

• (We might add: the property 𝜑 → 𝜓, which holds globally if and
only if any 𝜑-state also is a 𝜓-state.)

For our insect population, we want to know if the conditional p ⇝ q is
true in the current state of the population: that if we perturb the system
to be highly populated, the system will recover again, that is, evolve into
a state where the population is healthy.

To get an explication of this intuitive semantics, we interpret our
system as a relevant model and use its formal semantics. Naturally, the
worlds of the model are the states of the system (though we add one
special base world below). The interpretation function is that from the
system, and world-incompatibility is state-incompatibility.11 So atomic

10 For other logics of dynamical systems see, for example, Leitgeb (2005), Kremer and Mints
(2007), Fernández-Duque (2012), and Platzer (2012).

11 Once (in)compatibility is understood as a relation between states of dynamical systems,
should we (still) accept symmetry? Perhaps (thanks to a helpful referee for this) transforming
a into b (changing hydrogen and oxygen into water) is sometimes feasible, while transforming
b back into a (water into hydrogen and oxygen) is more work. One of us has argued in print
(Berto 2015) that the idea that (in)compatibility may not be symmetric imports intuitions from
the asymmetry of causal processes; and it’s not clear that these should be embedded in a general
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18 Hornischer and Berto

properties and∧,∨,¬ are straightforwardly interpreted.The trick for⇝
is, as mentioned in §1, to read ‘Rxyz’ as: there is a perturbation moving
the system from x into state y from which it evolves to z. Then the above
intuitive meaning of 𝜑 ⇝ 𝜓 is just the relevant conditional:

x ⊩ 𝜑⇝ 𝜓 if and only if ∀y, z ∈ X ∶ Rxyz & y ⊩ 𝜑 ⇒ z ⊩ 𝜓.

This reading of R is made precise as:

Rxyz ⇔ ∃a ∈ A ∶ y ∈ P(x, a) and lim
n→∞

Tn(y) = z,

where the second conditionmeans that the sequence y,T(y),T(T(y)), …
(which is known as the orbit of y) converges in the space X to z.12

It remains to specify the base world, which is to satisfy the normal-
ity condition (1). The idea is that the base world represents the state of
the observer of the system. So it is an additional state, 0, which is differ-
ent from all the system states. But how should we extend the ternary
relation, compatibility, and interpretation to this observation state 0?
The ternary relation should represent the relation ‘the observer looks
at system state x’, so it models the observer considering a specific system
state—or ‘situating’ themselves in the state space. As stated, this is a bi-
nary relation that holds between 0 and any system state x, but formally
we can cast it as a ternary relation by requiring R0xy to hold precisely if
x = y. Conveniently, this is exactly in line with the normality condition.
Compatibility and interpretation should be given by the corresponding
compatibility and interpretation of the initial state of the system. This is
because, as mentioned, the initial state is the current state of the system
from which it is analysed, much like the actual world in possible world
reasoning. So the observer takes the compatibility and interpretation of
the initial state as their ‘beliefs’ about the actual state of the system.13

semantics for negation. But if they should, not much hinges on that. We’ll then have relevant
logics where double negation introduction fails (a well-known effect of the failure of symmetry:
see Dunn 1993, Restall 1999, and Simonelli 2024). DNI will at most hold in a restricted class of
models where compatibility is symmetric, just as the Brouwerische axiom B of normal modal
logics only holds in a restricted class of Kripke frames where accessibility is symmetric.

12 A sequence x0, x1, x2, … of points in a topological space X converges to a point y if, for all
open sets U with y ∈ U, there is N such that for all n ≥ N, we have xn ∈ U.

13 An alternative would be to take 0 to be, not a new state, but the initial state of the system.
Then, to satisfy the normality condition, we adjust Rxyz: if x ≠ x0, it gets the above interpreta-
tion, but if x = x0, it is defined as y = z. This added clause represents the special status of the
initial state as the state from which the system is analysed. We can also make sense of it in terms
of perturbation: We require that (a) there are enough perturbations so that every state can be
reached by perturbation from the initial state, and (b) if we reach a state by perturbation from
the initial state, then we do not consider any further evolution of the dynamics to evaluate the
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The Logic of Dynamical Systems Is Relevant 19

Fig. 4 Interpreting a dynamical system as a relevant model.

An upshot is that, when evaluating the conditional 𝜑 ⇝ 𝜓 at the
observer’s state 0 (rather than a system state), it is true if and only if
any 𝜑-state is a 𝜓-state—so we get the global conditional mentioned
in the intuitive semantics (modulo including the observer’s state in the
system states). Thus, we make sense of the distinction in the Routley-
Meyer semantics between the base world and the non-base worlds—
and the corresponding distinction between a global and a local reading
of the relevant conditional. Here, it is understood as the distinction be-
tween the observer’s state and the system states. Correspondingly, the
observer takes a global perspective at the whole system and is the one re-
quiring truth-preservation in the definition of consequence, while at the
system states the conditional gets the local ‘perturbation plus evolution’
reading.

Figure 4 summarizes these ideas, which we now formalize in the
following definition (further explanations to follow).

Definition 3. Let S = (X, x0,T,A,P,C, i) be an interactive topolog-
ical system. Define the relevant model M(S) = (WS, 0S,RS,CS, iS)
induced by the interactive topological system S by:

• WS ∶= X ∪ {X}
• 0S ∶= X
• For x, y, z ∈ WS, define RSxyz by:

either x = 0S and y = z, or
x, y, z∈X and∃a ∈ A ∶ y ∈ P(x, a) and limn Tn(y) =
z.

perturbation conditional. It turns out that our desired soundness and completeness result also
works with this alternative. An advantage of this alternative is that it is more parsimonious, since
it doesn’t introduce a new state, but—as helpfully pointed out by a referee—a disadvantage is
that not all system states have the ‘perturbation plus evolution’ interpretation.
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20 Hornischer and Berto

• As a helpful function, define ⋅̂ ∶ WS → X by

x̂ ∶=
⎧⎪⎪⎨⎪⎪⎩

x if x ∈ X
x0 if x = 0S

• For x, y ∈ WS, define xCSy by: x̂Cŷ
• For x ∈ WS and p ∈ At, define iS(x, p) ∶= i(̂x, p)
• If X carries a partial order ≤, define the partial order

x ≤S y on WS by: either y ∈ X and x̂ ≤ y or y = 0S and
x = 0S.

We formally identify the observer state 0S with the whole state space X
itself. This represents the observer looking at the whole system, and it
has the desired consequence that 0S is a new state, that is, it is not in X
(by the foundation/regularity axiom in set theory). The ternary relation
RS combines the ‘perturbation plus evolution’ for system states with the
‘looking at a state’ for the observer. Finally, the ⋅̂ function situates the ob-
server in the state space: any system state x ∈ X is already situated, and
the observer 0S situates themselves at the initial state x0. With this, we
express the idea that compatibility and interpretation (as well as order, if
available) for the observer state are given by the corresponding notions
for the initial state of the system.

Figure 5 shows that the semantics we get when regarding the system
S as the relevant model M(S) indeed formalizes the intuitive semantics
for a logic of dynamical systems from the beginning of this section.14
Let’s illustrate this with our running example.

14 One can interpret relevant models also as time-discrete, possibly non-deterministic dynam-
ical systems, that is, labelled transition systems (LTS). We confine this in a footnote to avoid
digression, but LTSs are an important general model of computing systems used for model check-
ing and concurrent computation (for exampleWinskel andNielsen 1995; Baier and Katoen 2008).
A textbook definition of an LTS (Baier and Katoen 2008, p. 20) is as a tuple (S,Act,→, In,AP,L),
where S is a set of states, Act is a set of actions,→⊆ S× Act× S is a transition relation (written
x

a
Ð→ y), In ⊆ S is a set of initial states, AP is a set of atomic propositions, and L ∶ S×AP→ {0, 1}

is a function. An action a of an LTS is called idle if (1) for any state x, we have x
a
Ð→ x, and (2)

if x
a
Ð→ y, then x = y. Now, this is reminiscent of the normality condition (1)! In fact, we have

the following observation: The positive relevant models (W, 0,R, i) can be viewed as those LTSs
(S,Act,→, In,AP,L) where

• S = Act. This is then regarded as the set of worlds W and→ is the ternary relation R. We
write Rxyz for y

x
Ð→ z.

• In is a singleton consisting of an idle action. This action is the base world 0, and being
idle means precisely x

0
Ð→ y ⇔ x = y.

• AP = At. So AP is the set of propositional atoms and L is the interpretation function i.
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The Logic of Dynamical Systems Is Relevant 21

Fig. 5 Explicating the informal semantics by regarding the interactive
topological system S as a relevant model.

Example d (Example c continued). Let S be the interactive topo-
logical system from example c modelling our population of in-
sects. Let’s seewhat the logic of this dynamical system looks like by
regarding it as the relevant model M(S). Recall that we consider
‘The population is highly populated’ (p) and ‘The population is
healthy’ (q).

First, let’s consider again the sentence p ⇝ q: saying that if we
highly populate the system, it will recover. We claim that it is true
at any system state x. Indeed, given states y and z with RSxyz and
y ⊩ p, we need to show z ⊩ q. Since RSxyz and x is a system state
(that is, not the observer state), the system in particular evolves
from y to z. Since y ⊩ p, we have 0.7 < y < 0.9, so—from what we
know about the dynamics—the system will evolve from y to the
attracting fixpoint 0.5, so z = 0.5, and hence z ⊩ q, as required.

Second, let’s consider the sentence p ⇝ p, saying that if we
highly populate the system, it will evolve into a highly populated
state. Given the preceding reasoning, we expect this probably to
be false. Indeed, consider the initial state x0 = 0.6. Let’s perturb
the population by a = 0.2. So, say, y = 0.81 ∈ P(x0, a). From
there, the system converges to z = 0.5. Hence RSx0yz and y ⊩ p,
but z /⊩ p, so indeed x0 /⊩ p ⇝ p.

Third, consider the sentence q ⇝ (p ⇝ p). This is an instance
of paradox 3, and we would like to see that our system indeed

To also treat negation, one might extend this by a compatibility relation; cf. asynchronous tran-
sition systems (Winskel and Nielsen 1995). This provides an applied interpretation of relevant
models as particular LTSs, which are literally applied mathematical structures.
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22 Hornischer and Berto

avoids it. So we show that 0S /⊩ q ⇝ (p ⇝ p). Indeed, with
x0 = 0.6 as before, we have RS0Sx0x0 and x0 ⊩ q, but x0 /⊩ p ⇝ p.

Finally, we note that our interpretation also extends to ordered relevant
models. Let’s define an interactive topological system S with a partial or-
der ≤ on its state space X to be ordered (respectively, star-ordered) if the
induced relevant model M(S)with the order≤S is ordered (respectively,
star-ordered). An example is the following version of our population of
insects.

Example e. We change the interactive topological system S from
our population of insects example c.We redefine the perturbation
function P ∶ X×A ⇉ X as P(x, a) = {y ∈ [0, 1] ∶ x+a ≤ y ≤ 0.55}.
So when we perturb, we can only support the insect population
in growing more quickly (for instance, by providing ideal circum-
stances), but not much beyond the point it can reach on its own—
we can, so to speak, only work with nature, not against it. We
define compatibility as reachability through perturbation, that is,
xCy if and only if there is a with y ∈ P(x, a), or, equivalently,
x ≤ y ≤ 0.55. And we consider p representing ‘The population is
above equilibrium’ (i(x, p) = 1 if and only if x > 0.5), and q rep-
resenting ‘The population is not under-populated’ (i(x, q) = 1 if
and only if x > 0.25). Then S is an ordered interactive topological
system.15 And we still have, for example, 0S /⊩ q ⇝ (p ⇝ p), be-
cause x ∶= 0.5 ⊩ q but x /⊩ p ⇝ p since, by permuting with, for
example, a = 0.01, we can choose some y ∈ P(x, a) = [0.51, 0.55],
from which the system converges to z = 0.5, so RSx0yz with y ⊩ p
but z /⊩ p.

9. Soundness and completeness
Let us take stock: we now have a semantics for perturbation condition-
als and, more generally, a logic of dynamical systems; and we also have
an applied interpretation for some of the abstract models of relevant
logic. But to deliver on the promised contributions, two things are still
missing:

15 For this, use: If S = (X, x0,T,A,P,C, i) is an interactive topological system and ≤ is a par-
tial order on X, then a sufficient condition for S to be ordered is (a) atomic heredity (if i(x, p) = 1
and x ≤ y, then i(y, p) = 1), (b) anti-tonicity (if yCz and x ≤ y, then xCz), (c) initial non-
perturbability (if x0 ≤ x, then, for all a, we have P(x, a) = ∅), (d) order-reversing perturbation
(if x ≤ y, then P(y, a) ⊆ P(x, a)).
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The Logic of Dynamical Systems Is Relevant 23

1. We want to fully understand the logic of perturbation con-
ditionals and dynamical systems: we want to characterize
this logic by its sound argument schemes and, ideally, by
identifying it as a well-known logic.

2. We want to know that our applied interpretation is complete:
so far we know that some relevant models come from dynam-
ical systems, but we would like to know that, up to logical
equivalence, all relevant models are of this form.

We now bring both points home with one theorem, proved in the
appendix. Let’s first state the theorem and then explain how it delivers:

Theorem 4. For any relevant model M, there is a simplified in-
teractive topological system S whose induced relevant model is
equivalent to M, that is, their base worlds make true exactly the
same sentences. This remains true when adding ‘positive’, ‘or-
dered’, and ‘star-ordered’. And if M is finite, S can be chosen to
be standard.16

This precisely delivers point 9: not only do dynamical systems induce
relevant models, but all relevant models come, up to equivalence, from
dynamical systems. As for point 9: since all relevantmodels are governed
by the argument schemes of the positive basic relevant logic B+ (see fig-
ure 2), they are also valid for dynamical systems. For example, axiom
(A5) yields the following valid argument scheme for systems:

Given a state x, assume (a) whenever we perturb x into a 𝜑-state, it
will evolve into a 𝜓-state, and (b) whenever we perturb x into a 𝜑-
state, it will evolve into a 𝜒-state. Then whenever we perturb x into
a 𝜑-state, it will evolve into a 𝜑 ∧ 𝜒-state.

In logical terminology this means that the logic B+ is sound for dynami-
cal systems.However, to fully understand the logic of dynamical systems,
we also want a complete description of the sound argument patterns: that
anything that is true about all dynamical systems can also be derived

16 Comments on versions of this result: (1) As mentioned, we could choose the base world as
the initial state. (2) One could investigate different notions of (stable) limit behaviour, other than
plain convergence in defining RS; for example, z is a limit point of the orbit of y (in which case
the result still works). (3) We could also drop the assumption on systems that the perturbation
function is appropriately continuous (that is, is only a multifunction). (4) The theorem implies
that relevant logic cannot ‘see’ the difference between non-deterministic systems (interpreting
M as an LTS as in footnote 14) and deterministic systems (the system S). This is to be expected
since, intuitively, this difference need not be observable: a state could have two observationally
identical successor states.
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24 Hornischer and Berto

from the few sound axioms and rules—which generally is much harder
to achieve! It says that not only do these few axioms and rules describe
the general laws of dynamical systems (soundness), but all general laws
of dynamical systems are already described by them (completeness).
This is what theorem4 delivers: different relevant logics can be character-
ized by different classes of abstract relevant models which, by theorem 4,
further correspond to different classes of dynamical systems. Concretely,
for the example of B+, we have the following.

Corollary 5. The logic of positive interactive topological systems
is the positive basic relevant logic B+: for a set of formulae Σ and
a formula 𝜑, 𝜑 is derivable from Σ in the logic B+ if and only if, in
any positive interactive topological system S, the formula 𝜑 is true
at the observer state 0S whenever all formulae of Σ are true at 0S.

10. Stronger relevant logics
So we have delivered the two main contributions of this paper and thus
established a bridge between dynamical systems and relevant logics. We
did so for a broad class of dynamical systems and a broad class of relevant
models. This was to include all potential systems and provide an applied
semantics for all relevant models. The obvious next item on an agenda
for future work is: how do interesting subclasses of systems correspond
to stronger relevant logics?

Relevant logicians have come up with systems stronger than B,
some of which have been applied for various purposes: for instance,
to model common knowledge (Punčochář and Sedlár 2021) or justifi-
cation (Standefer 2023), as underlying logics for non-classical formal
theories of arithmetic (Meyer 1976), as formal semantics for languages
expressing their own transparent truth predicates (Beall 2009), and as
set theories with unrestricted comprehension principles (Routley 1979;
Weber 2021).

What we need is a correspondence theory. This is well known from
modal logic (Blackburn, de Rijke and Venema 2001): one starts with the
basic normal modal logic K, and shows that it is sound and complete
with respect to Kripkemodels (W,R, i)which don’t have any constraints
on the binary accessibility relation R. Then one identifies constraints on
R, such as reflexivity or transitivity. And one shows that these constraints
correspond to formulae of the logic in the sense that they are valid on the
so constrained class of models, for example, ◻𝜑 → 𝜑 or ◻𝜑 → ◻ ◻ 𝜑,
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The Logic of Dynamical Systems Is Relevant 25

respectively. This helps to find and illuminate the intended applied in-
terpretation of the logical operators by relating structural to logical in-
tuitions. Now a correspondence theory for relevant logic also has been
developed (Priest and Sylvan 1992; Restall 1993; 2000, §11.5).

In the remainder of this section, we start to investigate the logic of
subclasses of dynamical systems.

In relevant correspondence theory, one gets relevant logics stronger
than B by imposing constraints on the ternary R, which then validate
more principles than those of B. However, the constraints are oftenmore
cumbersome than in modal logic, and they may involve the Routley star
∗ or the hereditary ordering≤. Examples from the literature (taken from
Priest 2008, ch. 10, notation adjusted) include:

(1) If Rxyz, then Rxz∗y∗.
(2) If there is a w ∈ W such that Ruvw and Rwxy, then there is a

z ∈ W such that Ruxz and Rvzy.
(3) If there is a w ∈ W such that Ruvw and Rwxy, then there is a

z ∈ W such that Rvxz and Ruzy.
(4) If Rxyz, then there is a w ∈ W such that Rxyw and Rwyz.
(5) If Rxyz, then there is a w ∈ W such that x ≤ w and Rywz.

These validate, respectively:

(a) (𝜑 → ¬𝜓)→ (𝜓 → ¬𝜑) (Contraposition)
(b) (𝜑 → 𝜓)→ ((𝜓 → 𝜒)→ (𝜑 → 𝜒)) (Suffixing)
(c) (𝜑 → 𝜓)→ ((𝜒 → 𝜑)→ (𝜒 → 𝜓)) (Prefixing)
(d) (𝜑 → (𝜑 → 𝜓))→ (𝜑 → 𝜓) (Contraction)
(e) (𝜑 → ((𝜑 → 𝜓)→ 𝜓) (Assertion)

The logic with (a) and (c) on board is called TW. With (d) and (e) added,
it’s known as R—possibly the most established relevant logic. It can be
proved to have the Variable Sharing Property, so all weaker systems have
it, too (Priest 2008, pp. 205–6).

Do these conditions make sense in the dynamical systems interpre-
tation? Let S = (X, x0,T,A,P,C, i) be an interactive topological system.
Wemay assume it’s ordered by≤, to talk about condition (5). To fix some
useful notation, write x ⇢ y for ∃a ∈ A ∶ y ∈ P(x, a), that is, the system
in state x can be perturbed to state y. Write x → y for limn Tn(x) =
y, that is, the system in state x will evolve to state y. Some reason-
able assumptions on perturbability are the following (explanations to
follow):
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26 Hornischer and Berto

(i) If x⇢ y and y → z, then x⇢ z. (⇢→⇒⇢)
(ii) If x → y and y⇢ z, then x⇢ z. (→⇢⇒⇢)
(iii) If x⇢ y and y⇢ z, then x⇢ z. (⇢⇢⇒⇢)
(iv) If x → y, then y⇢ x. (→⇒⇠)
(v) If x⇢ y, then x ≤ y. (⇢⇒≤)
(vi) x⇢ x. (=⇒⇢)

Here, (i) and (ii) say that first perturbing and then converging, or vice
versa, can also be realized by one perturbation. (iii) says that perturbabil-
ity is transitive (for instance, by chaining the perturbations).17 (iv) says
that convergence can be reversed by perturbation. (v) says that we can
only perturb along the order of the system. And (vi) modestly demands
that perturbability be reflexive: that there is the trivial perturbation of
not doing anything.

As we shall now see, these assumptions go a long way towards val-
idating the model conditions (1) to (5) for the relevant logic R. For
reasons of space, we won’t discuss condition (1), as it has to do only
with negation and hence compatibility, whereas our prime concern is
with the conditional and hence the ternary relation. And we omit look-
ing separately at the base world. The aim here is to illustrate ideas, not
formal correctness.

For condition (2), consider figure 6.18 The antecedent of the impli-
cation shows that RSuvw (that is, u ⇢ v and v → w) and RSwxy (that is,
w⇢ x and x → y). Using z ∶= y, we claim RSuxz and RSvzy: indeed,

• u ⇢ x because u ⇢ v → w ⇢ x implies, by (i), u ⇢ w ⇢ x, which,
by (iii), implies u⇢ x

• x → z by assumption
• v ⇢ z because v → w ⇢ x → y implies, by (ii), v ⇢ x → y, which,

by (i), implies v⇢ y, and
• z → y because, since limn Tn(x) = y, continuity implies T(y) = y,

so limn Tn(y) = y.

We argue similarly for condition (3). For condition (4), if RSxyz, choose
w ∶= z: then, trivially, RSxyw, and, since y → z, implies w⇢ y, so RSwyz.
For condition (5), if RSxyz, choose w ∶= y: since x⇢ y, (5) implies x ≤ w,
and we have y⇢ w (by 6) and w → z (by assumption), so RSywz.

17 This is the first step toward a monoid/group structure on the set of perturbations A, so one
can speak—in the mathematical sense—of it acting on the state space X.

18 Much inspired by the notation of Priest (2008, p. 194).
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The Logic of Dynamical Systems Is Relevant 27

Fig. 6 Validating the suffixing condition in dynamical systems.

11. Conclusion
We have shown that dynamical systems provide a natural interpretation
for the semantics of relevant logic. Then relevant logic, conversely, pro-
vides the tools for reasoning about dynamical systems, in particular by
capturing, via the logical validities involving the relevant conditional,
the laws governing the systems.

Further work should continue §10: investigating the applied seman-
tics for restricted classes of dynamical systems and correspondingly
stronger relevant logics. Similarly, one may ask which relevant logics
can be realized over a particular class of systems (for example, edge
shifts, ergodic systems, and so on), ormaybe even in a single system (say,
a continuous dynamics on the real line). Another question is whether
the two constructions from systems to models and back can be seen as
category-theoretic functors—maybe even adjoint ones. A further excit-
ing avenue is to explore whether other relevant connectives like fusion
or the Ackermann truth constant (Standefer 2022) and the related linear
logic (Allwein and Dunn 1993) can be given a dynamical system inter-
pretation—thus also providing a richer language for systems. Moreover,
one can investigate a counterfactual version of our relevant conditional
(Mares and Fuhrmann 1995) by considering the smallest or minimal—
rather than any—perturbation rendering the antecedent true.19

19 Many thanks to two anonymous referees who provided detailed comments that improved
the paper. For helpful discussions, we are also grateful to Hannes Leitgeb and the audience of the
Work in Progress Talk Series at the Munich Centre for Mathematical Philosophy, LMU Munich.
Franz Berto’s research is funded by a Leverhulme Trust Research Project Grant RPG-2023-236,
What If…? Knowing by Imagining [WIKI]: The Logic and Rationality of Imagination. Part of Levin
Hornischer’s work was done within the project ‘Foundations of Analogical Thinking’ (Project
No. 322-20-017) of the research programme ‘PhDs in the Humanities’, financed by the Dutch
Research Council (NWO).
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28 Hornischer and Berto

Appendix: Proof of theorem 4
Given a relevant model M, we build the interactive topological system
S = S(M), whose induced relevant model is equivalent to M, by using
the perspective on relevantmodels as LTSs (footnote 14) and the toolbox
of symbolic dynamics (Lind and Marcus 1995).

We think of Rxyz in M as a transition from state y to state z with la-
bel x, written y xÐ→ z. We call y the starting state of Rxyz and z the ending
state of Rxyz. If the starting states and the ending states match, we can
chain together transitions to obtain a path (or trajectory):

… x−2Ð→ z−2 = y−1
x−1Ð→ z−1 = y0

x0Ð→z0 = y1
x1Ð→ z1 = y2

x2Ð→ …,

where the underlined arrow denotes the time step 0. Formally, a two-
sided infinite path (or just path) in M is a function t ∶ ℤ → R such that,
for all n ∈ ℤ, the ending state of t(n) is identical to the starting state of
t(n + 1). (Mnemonic: t as in trajectory.)

Some useful terminology: for x ∈ W, write x for the path

… 0Ð→ x 0Ð→ x 0Ð→x 0Ð→ x 0Ð→ …

Call a path t pure if there is x ∈ W such that t = x. For a path t, write t0
for the starting state of t(0) (that is, if t(0) = y xÐ→ z, then t0 = y).

Now, to build system S, the idea is that the states of S are the paths
in M, and the dynamics is the shift operator (moving all transitions once
to the right). Formally:

Definition 6. Let M = (W, 0,R,C, i) be a relevant model. Define a
system:

• X is the set of all two-sided infinite paths in M. The
topology on X is the subspace topology of the product
topology on Rℤ where R carries the discrete topology.

• x0 ∶= 0.
• 𝜎 ∶ X → X is the shift operator. It maps a path t to the

the path 𝜎(t) defined by 𝜎(t)(n) = t(n + 1).
• A ∶= X
• v ∈ P(t,u) if and only if there are x, y, z ∈ W such that

t0 = x, u = y, Rxyz (that is, y xÐ→ z) and v is the path

… 0Ð→ y 0Ð→ y xÐ→z 0Ð→ z 0Ð→ …

• Compatibility: tC0u if and only if t0Cu0.
• Interpretation: i0(t, p) ∶= i(t0, p).
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The Logic of Dynamical Systems Is Relevant 29

Call S(M) = (X, x0, 𝜎,A,P,C0, i0) the interactive topological sys-
tem induced by the relevantmodelM. (Lemma 7 below shows that
this is well-defined.)

If M was an ordered relevant model with order ≤, define the
order ⊑ (well-defined by lemma 10 below) on S(M) by

• t ⊑ u if and only if (a) t = u, or (b) t0 < u0, or (c) t0 = u0 and
u = u0.

So compatibility and interpretation in the system are compatibility
and interpretation, respectively, at time 0 in the model. And perturbing
a path t by a (pure) path u yields the ‘merged’ path v above.

In the remainder, we check that S = S(M), when regarded as a rel-
evant model, is indeed equivalent to M. Let’s start by checking that S is
an interactive topological system.

Lemma 7. In the setting of definition 3, S(M) is a simplified
interactive topological system. It is standard if M is finite.

Proof. Write M = (W, 0,R,C, i) and S(M) = (X, x0, 𝜎,A,P,C0, i0). The
opens of X are given by arbitrary unions of finite intersections of sets of
the form Un

r , which contain all paths whose n-th component is r ∈ R.
So X is Hausdorff (if t ≠ u differ at position n, they are separated by the
disjoint opens Un

t(n) and Un
u(n)) and 𝜎 is continuous (the 𝜎-preimage of

Un
r is Un+1

r ). By construction, S(M) is simplified. Next, 𝜎 is clearly bi-
jective; and if M is finite, R is finite, hence compact, so by Tychonoff ’s
theorem, the product space Rℤ is compact, and so, since X is closed, it
also is compact.

It remains to show that P ∶ X × X ⇉ X is appropriately continuous.
For x, y ∈ W, write

Rx ∶= {r ∈ R ∶ the label of r is x}
Ry ∶= {r ∈ R ∶ the starting state of r is y}.

Closed-valued: Given t,u ∈ X, if u is not pure, P(t,u) = ∅ is closed.
If u = y is pure, write x ∶= t0, then

P(t,u) = {v ∈ X ∶ ∃z ∈ W ∶ Rxyz and v =… y 0Ð→ y xÐ→z 0Ð→ z …}
= {v ∈ X ∶ ∀0 ≠ n ∈ ℤ ∶ v(n) ∈ R0, v(0) ∈ Rx, v(0) ∈ Ry}

which is closed qua intersection of closed sets.
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30 Hornischer and Berto

Upper hemicontinuous: For t,u ∈ X, let V ⊆ X be open with
P(t,u) ⊆ V. If u is not pure, consider

U0 ∶= {(t′,u′) ∈ X× X ∶ ∃n ∈ ℤ ∶ u′(n) ∈ R ∖ R0}.
This is open with (t,u) ∈ U0 and, for all (t′,u′) ∈ U0, we have
P(t′,u′) = ∅ ⊆ V, as required. So let u = y be pure. Write x ∶= t0. Define

Ux
y ∶= {(t′,u′) ∈ X× X ∶ t′(0) ∈ Rx and u′(0) ∈ Ry}.

Then Ux
y is open with (t,u) ∈ Ux

y and, for (t′,u′) ∈ Ux
y, it is easily shown

that P(t′,u′) ⊆ P(t,u), and hence P(t′,u′) ⊆ V, as required.
Closed-domain: To show that {(t,u) ∶ P(t,u) ≠ ∅} is closed, let

t,u ∈ XwithP(t,u) = ∅ andfind an openU ⊆ X×X such that (t,u) ∈ U
and for all (t′,u′) ∈ U, we have P(t′,u′) = ∅. If u is not pure, we can
choose U0 as above. If u = y, write x ∶= t0, and we can choose Ux

y as above
(if (t′,u′) ∈ Ux

y, then P(t′,u′) ⊆ P(t,u) = ∅).

The next lemma characterizes convergence of the dynamics in
S(M).

Lemma 8. In the setting of definition 3, the following are equiva-
lent for t,u ∈ X:

(1) limn 𝜎n(t) = u
(2) u is a constant path which also is the tail of t; that is, for all

n ∈ ℤ, u(n) = u(0) and there is N such that, for all n ≥ N,
t(n) = u(0).

Proof sketch. (1)⇒(2). Assume limn 𝜎n(t) = u. To show that u is con-
stant, let k ∈ ℤ and show u(k) = u(k + 1). Consider the open set
U = Uk

u(k) ∩ Uk+1
u(k+1). Since u ∈ U and 𝜎n(t) converges to u, there is N

such that, for all n ≥ N, 𝜎n(t) ∈ U. Since 𝜎N(t) ∈ U and 𝜎N+1(t) ∈ U,

𝜎N(t)(k + 1) = u(k + 1) 𝜎N+1(t)(k) = u(k).
Now, since 𝜎N+1(t)(k) = 𝜎N(t)(k + 1), we get u(k) = u(k + 1). To show
that t has tail u(0), consider U0

u(0).
(2)⇒(1). Assume u is a constant path which is also the tail of t. If

Uk
r is an open neighbourhood of u (generalizing to any open neighbour-

hood is not too difficult), let N be the start of the u-tail of t, then, for
n ≥ N, we have 𝜎n(t)(k) = t(n + k) = u(k) = r, so 𝜎n(t) ∈ Uk

r .

Now the key lemma is to relate truth in the original relevant model
M to truth in the relevant model induced by the system S(M).

Mind, Vol. XX . XX . XXXXXXX 2025 © Hornischer and Berto 2025

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/advance-article/doi/10.1093/m
ind/fzaf012/8151907 by guest on 28 M

ay 2025



The Logic of Dynamical Systems Is Relevant 31

Lemma 9. Let M be a relevant model. Then, for all states t of
M(S(M)) and for all formulae 𝜑,

M(S(M)), t ⊩ 𝜑⇔ M, t̂0 ⊩ 𝜑.

Proof. Write M = (W, 0,R,C, i) and S ∶= S(M) = (X, x0, 𝜎,A,P,C0, i0).
The proof is by induction on 𝜑.

For atomic 𝜑, by definition, t ⊩ 𝜑 if and only if i0(̂t, 𝜑) = 1 if and
only if i(̂t0, 𝜑) = 1 if and only if t̂0 ⊩ 𝜑.

For ¬𝜑, we have to show

(∀u ∈ WS ∶ t(C0)Su ⇒ u /⊩ 𝜑) if and only if
(∀y ∈ W ∶ t̂0Cy ⇒ y /⊩ 𝜑).

(⇒) Let y ∈ W with t̂0Cy. Consider y ∈ X. Then t̂C0y, so t(C0)Sy,
and hence, by assumption, y /⊩ 𝜑. By induction hypothesis, y = y0 /⊩ 𝜑,
as required.

(⇐) Let u ∈ WS with t(C0)Su. So t̂C0û, so t̂0Cû0. By assumption,
û0 /⊩ 𝜑. By induction hypothesis, u /⊩ 𝜑, as required.

For 𝜑 ∧ 𝜓 and 𝜑 ∨ 𝜓, this is immediate by induction hypothesis.
For 𝜑 ⇝ 𝜓, we have to show

(∀u, v ∈ WS ∶ RStuv and u ⊩ 𝜑 ⇒ v ⊩ 𝜓) if and only if
(∀y, z ∈ W ∶ R̂t0yz and y ⊩ 𝜑 ⇒ z ⊩ 𝜓).

(⇒) Let y, z ∈ W with R̂t0yz and y ⊩ 𝜑. We need to show z ⊩ 𝜓.
If t = 0S, then t̂0 = 0, so R̂t0yz implies y = z, so y = z and RStyz. By

induction hypothesis, y ⊩ 𝜑, so the assumption implies z ⊩ 𝜓, hence,
again by induction hypothesis, z ⊩ 𝜓.

So let t ≠ 0S, so t̂ = t ∈ X. Define x ∶= t0 and v as the path start-
ing with y moving via x to z at time 0 and then staying there. Then, by
definition, v ∈ P(t, y), and, by lemma 8, limn 𝜎n(v) = z. Hence, by defi-
nition of RS, we have RStvz. Since v̂0 = y ⊩ 𝜑, the induction hypothesis
implies v ⊩ 𝜑. So the assumption implies z ⊩ 𝜓. Hence, by induction
hypothesis, z = ẑ0 ⊩ 𝜓, as required.

(⇐) Let u, v ∈ WS with RStuv and u ⊩ 𝜑. Show v ⊩ 𝜓.
If t = 0S, then RStuv implies u = v. Hence t̂0 = 0 and û = v̂ and

hence also û0 = v̂0. So R̂t0û0v̂0. By induction hypothesis, û0 ⊩ 𝜑, so the
assumption implies v̂0 ⊩ 𝜓, so, again by induction hypothesis, v ⊩ 𝜓,
as required.

So assume t ≠ 0S. Then RStuv implies t,u, v ∈ X and there is
a ∈ A = X with u ∈ P(t, a) and limn 𝜎nu = v. Since u ∈ P(t, a), there are
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x, y, z ∈ W such that t0 = x, a = y, Rxyz, and u is the path starting with
y moving via x to z at time 0 and then staying there. Since limn 𝜎nu = v,
lemma 8 implies v = z. Moreover, since u ⊩ 𝜑, the induction hypothesis
yields y = û0 ⊩ 𝜑. Since R̂t0yz (since t0 = x), the assumption implies
z ⊩ 𝜓, so, again by induction hypothesis, we have, since v̂0 = z0 = z, that
v ⊩ 𝜓, as required.

Finally, we need that the construction of the system S from a relevant
model M preserves (star-) orderedness.

Lemma 10. If M is a (star-) ordered relevant model, then S(M) is
a (star-) ordered interactive topological system.

Proof. Write M = (W, 0,R,C, ≤, i) and S ∶= S(M) = (X, x0, 𝜎,A,P,C0,
⊑, i0). It is straightforward to verify that ⊑ is a partial order on X. For
heredity, assume t and u are in M(S) with t ⊩ 𝜑 and t ⊑S u. By def-
inition of ⊑, if t ⊑S u, then t̂ ⊑ û, which in turn implies t̂0 ≤ û0. By
lemma 9, t̂0 ⊩ 𝜑. So, since M is ordered, û0 ⊩ 𝜑. So by lemma 9, u ⊩ 𝜑,
as required.

Finally, assuming M to be star-ordered, we show that also S is star-
ordered, that is, (C0)S is symmetric, serial, and convergent. Symmetric:
If t(C0)Su, then t̂C0û, so t̂0Cû0, so û0Ĉt0, so ûC0̂t, so u(C0)St. Serial:
Given t, let y be such that t̂0Cy.Then t̂C0y, so t(C0)Sy. Convergent: Given
t, assume t(C0)Su for some u. So x ∶= t̂0 is C-compatible with something
(namely û0), so let x∗ be the≤-greatest elementC-compatible with x.We
claim that u ∶= x∗ is the⊑S-greatest element (C0)S-compatible with t. In-
deed, we have t(C0)Su since t̂0 = xCx∗ = û0. And if v is such that t(C0)Sv,
we show that v ⊑S u. Indeed, since t(C0)Sv, we have x = t̂0Cv̂0 =∶ w, so
w ≤ x∗. If w < x∗, we have v̂ ⊑ u, so, since u ∈ X, also v ⊑S u. And if
w = x∗, we have, since v̂0 = w = x∗ = u0 and u = u0, that v̂ ⊑ u, so again
v ⊑S u.

Now our desired theorem 4 follows:

Proof of theorem 4. Let M be a relevant model. Choose S to be the simpli-
fied interactive topological system S(M) from definition 6. If M is finite,
S is standard.Writing 0 for the base world of M, the base world of the rel-
evant model induced by S (that is, MS(M)) is 0S. Then lemma 9 implies,
for all 𝜑, that 0S ⊩ 𝜑 if and only if 0 = 0̂S0 ⊩ 𝜑.

If M was a positive relevant model, we could do the same con-
struction of S(M) and proof of lemma 9 but ignore compatibility and
negation. Then S would be a positive simplified interactive topological
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system whose induced relevant model is equivalent to M. If M is or-
dered, lemma 10 implies that S is ordered, and they are still equivalent
by lemma 9. The same holds when replacing ‘ordered’ by ‘star-ordered’.
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