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Preface

This is the reader for the course “Philosophy and Theory of Artificial
Intelligence” given during the winter semester 2024/25 at LMU Munich as
part of the Master in Logic and Philosophy of Science. The reader is updated
as the course progresses. A website with all the course material is found at

https://levinhornischer.github.io/PhilTheoAI/.

Comments I’m happy about any comments: spotting typos, finding
mistakes, pointing out confusing parts, or simply questions triggered by
the material. Just send an informal email to Levin.Hornischer@lmu.de.

Content This course provides, as its title suggests, an introduction to both
the philosophy and the theory of artificial intelligence. The course title was

inspired by the conference
series of the same name.

This field researches the
philosophical foundations of artificial intelligence (AI). It recently gained
much prominence because of its urgent relevance. AI made astonishing
but also disconcerting technological progress. For a recent example, just
think of ChatGPT. However, we are lacking a theoretical understanding of
AI. We would like to answer questions like the following. Why are neural
networks—that underlie modern AI—so good at learning from data? And
what kind of knowledge do they have? How do they compare to the
human-interpretable symbolic AI models that have been used previously?
What is even a good language to talk about AI models and the computation
that they perform? What are the possibilities and limitations of AI models?
We will in particular also investigate the problems of modern AI: How to
do deal with its ethical issues like bias or fairness. We look at the black-
box problem of neural networks: that they are difficult to interpret and
hard to explain. And we consider their lack of robustness: that in similar
situations they unexpectedly might behave incorrectly. Answering these
questions is not just an engineering task: it crucially also is a philosophical
task—which we undertake in this course.

Objectives In terms of content, the course aims to convey an overview
of the questions, methodology, and results of the philosophy and theory of
AI. We cover both classic material and cutting-edge research. In terms of
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skills, the course aims to teach: (1) the basic ability to program an AI model,
(2) the ability to critically reflect on the many issues of AI by relating it to
established theory in philosophy, and (3) the ability to apply results from
the theory of AI to assess its power and limits.

Prerequisites The course does not assume any programming knowledge.
It assumes basic familiarity with philosophy (first-year university level),
logic (e.g., an introductory course) and mathematics (though not really
beyond high-school level). None of these are strictly necessary: by far most
of the reader can be understood also without, it will mostly be helpful to
appreciate, e.g., remarks about connected and more advanced topics.

Schedule and organization The course is organized as a seminar. Hence,
for each session, we have assigned readings. During the session, we first
make sure that we all have understood the provided key AI concepts
relevant for the session (by arriving at an explanation in the group), and
then we critically discuss the readings. Study questions in this reader are
meant to both help engagement with the readings and as starting points
for discussion in class. The schedule for the readings is found on the
course’s website. In sum, the readings aim to provide an overview of the
field of philosophy and theory of AI.

After an introduction to modern AI, the organizational principle for
selecting the readings was ‘question-based’. Each chapter concerns one
‘big question’ about the philosophy of AI. Other organizational

principles would be
possible, too; e.g.,
‘method-based’.

See the table of contents for a
list of those chapters. As usual, there is much more possible content than
time, and during the course we can still decide on which of the readings
we will focus on.

Layout These notes are informal and partially still under construction.
For example, there are margin notes This is a margin note.to convey more casual comments
that you’d rather find in a lecture but usually not in a book. Todo notes
indicate, well, that something needs to be done. References are found at This is a todo note

the end.

Further study material In addition to the provided papers and further
material, some helpful short explainer videos on AI are found here. And
on philosophy of neuroscience here. References for ‘classical’ philosophy
of AI (i.e., up to the early 1990s) are, e.g., Boden (1990) and Copeland
(1993).
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Notation Throughout, ‘iff’ abbreviates ‘if and only if’. Study questions
are marked by

⇝ This is a study question.

Acknowledgement I have taken great inspiration in designing this course
from other courses on this topic both by Stephan Hartmann and Timo
Freiesleben and by Cameron Buckner.
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1 Introduction to AI

This chapter’s big question

What actually is an AI system and, in particular, a neural net-
work?

Key concepts

• History of AI: Ada Lovelace, Alan Turing, McCulloch & Pitts,
Logic Theorist, Dartmouth workshop, division of AI into life
(cybernetics, connectionism, differential equations) and mind
(symbolic computing, logic), big data, deep learning revolution.

• Types of AI: classical/symbolic vs subsymbolic/neural net-
works/connectionism.

• Definitions of AI: Turing test (more on this in chapter 2 and fig-
ure 1.1), technological vs scientific aim of AI, virtual vs physical
machines

• Types of learning tasks: Supervised learning, unsupervised
learning, reinforcement learning. Machine learning pipeline
(conceptualization, data, model, deployment).

• Artificial neural networks: neurons, layers, feedforward vs re-
current, weights, activation function, loss function (as your
way of telling the neural network what to optimize for), back-
propagation, learning rate, local/global minima (equilibrium),
regularization, overfitting/underfitting.

Before one can do philosophy of X, one needs a good understanding of X.
So we start with an introduction to AI, both practically and theoretically.

Lecture 1 For a practical introduction, we see how an AI system is
actually built in practice. We consider the standard example of training
a neural network to classify hand-written digits (on the MNIST dataset).
Thus, we get a concrete idea of what an ‘AI system’ really is and this does
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not remain an abstract term in future discussion. We build the system
in the form of a coding exercise, which is purpose-built for this course
and available on the course website. But—fear not—you do not need any
coding experience for this! In class, we go through the parts of the coding
exercise. As a study question, you are asked to:

⇝ Change the parameters and see how the performance of the neural
network changes.

⇝ Your challenge is to find some parameters with which the networks
reaches an accuracy of 98%.

In the next lecture, we will discuss your observations.

Lecture 2 For a theoretical introduction, the readings below and also the
coding exercise introduce the central concepts of modern AI, which are
summarized in this chapters list of ‘key concepts’.

⇝ Make sure that, by doing the readings, you know what these con-
cepts mean.

We discuss them in the second lecture of the course.
The readings also mentioned the following further advanced concepts.

You can skip them on a first reading and come back to them at a later stage:

• biological plausibility (backprop too global, Boden’s ‘too neat, too
simple, too few, too dry’, neuromodulation like GasNet),

• Hebbian learning (fire together, wire together),

• predictive coding (Helmholtz’s ‘unconscious inference, the ‘Bayesian
brain’, cognition as predicting incoming low-level sense information
from higher-level neural layers),

• perceptron (XOR problem),

• localist (concepts represented by single neurons) vs distributed net-
works (concepts stored across the whole system)

Readings

• A very accessible overview, written at the beginning of the deep
learning revolution: M. A. Boden (2016). AI: Its nature and future.
Oxford: Oxford University Press. Chapters 1 and 4.

• Short explainer videos of central concepts in AI are found here.
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empiricist rationalist

thought process
thinking humanly

(cognitive modeling)
thinking rationally

(logic & probability)

behavior
acting humanely

(Turing test)
acting rationally
(decision theory)

Figure 1.1: The four definitions of artificial intelligence of Russell and
Norvig (2021, ch. 1) according to whether an AI system should
realize thought processes (first row) or behavior (second row)
and whether the benchmark is human (left column) or ideal
(right column) performance.

An excellent detailed mini-series explaining neural networks is
found here.

• The coding exercise on the course website.

Further material

• A great interactive visualization of neural networks is found
here.

• A concise introduction to deep learning and its philosophical
aspects: C. Buckner (2019). “Deep learning: A philosophical
introduction.” In: Philosophy Compass 14.10, e12625. DOI: https:
//doi.org/10.1111/phc3.12625.

• An introduction to AI from the standard textbook: Russell and
Norvig (2021, ch. 1). They have a fourfold definition of AI:
acting humanly (Turing test), thinking humanly (cognitive mod-
eling), thinking rationally (logic, probability), acting rationally
(rational agent; perfect vs limited rationality).

• An encyclopedia entry on AI: S. Bringsjord and N. S. Govindara-
julu (2022). “Artificial Intelligence.” In: The Stanford Encyclopedia
of Philosophy. Ed. by E. N. Zalta and U. Nodelman. Fall 2022.
Metaphysics Research Lab, Stanford University
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2 AI and philosophy of mind

This chapter’s big question

Can AI systems think? Like humans?

Key concepts

• Turing test

• Symbol grounding problem

• Octopus test/Chinese room though experiment

• Classicist vs connectionist theories of mind

• Levels of analysis: neural, subsymbolic, symbolic; Marr’s levels

• Physical symbol system hypothesis (Newell–Simon) vs Connec-
tionist dynamical system hypothesis (Smolensky)

Lecture 3 A classic text Turing is a giant of
computer science. There is
even a Hollywood movie
(The Imitation Game,
2014) portraying Turing’s
eventful and also tragic life
(e.g., he was prosecuted in
1952 for his sexual
orientation).

on the question whether an AI system—or, sim-
ply, a ‘machine’—can think is Turing’s 1950 paper, in which he introduces
what is now known as the Turing test. Some even take this as the very defi-
nition of artificial intelligence, i.e., when a machine should be considered
intelligent (the other three are in figure 1.1). The Turing test operationalizes
the intuitive question ‘Can machines think?’ in a behavioristic way: can
you distinguish whether answers to your questions where produced by
the machine or by a human?

⇝ Can we really only test for intelligence in a purely behavioristic way
(up to ‘extension’) and not also capture aspects of thought processes
(‘intensional’ aspects)?

⇝ Are response times (or computational complexity) aspects of thought
processes? If the question was to multiply 793 and 868, the machine
could add an artificial pause to mimic a human response; however,
the machine is exposed if it is not as quick as humans in task they
find easy (e.g., pattern recognition).
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⇝ What is the relation between the two sentences (1) ‘This machine
can think’ and (2) ‘This machine passes the Turing test’? According
to Turing, we can only say something about (2), which is the exten-
sional/observable reflection of (1). Is (2) or rational reconstruction of
(1), serving as a good definition of AI? See Glymour (2015,

p. 357) for the idea that the
person in the Chinese
room also has to match the
computation time of a
Chinese speaker, not just
the input-output relation.

Or can one also ask if (2) is a
conceptual analysis (1), i.e., is (2) sufficient and necessary for (1)? A
infamous argument against necessity is the Chinese room thought
experiment: A person who doesn’t speak Chinese is in a room and
responds to incoming Chinese message according to a long look-up
table; from the ‘outside’, this generates the correct behavior, but on
the ‘inside’ there is no understanding—or so the argument goes. (For
more, see Oppy and Dowe (2021).)

Fast-forward 70+ years, seeing ‘machines’ like ChatGPT, what about
Turing’s test? Is it solved? The first author, Emily M.

Bender, is an influential
researcher in Natural
Language Processing and
AI Ethics, who is also
well-known for the
stochastic parrot paper
(Bender, Gebru, et al.
2021).

The next paper discusses (and denies) whether
large language models (LLMs) can, apart from producing the sensible text
response, also be said to understand the meaning of this text and in this
sense be intelligent.

We argue that, independently of whether passing the Turing
test would mean a system is intelligent, a system that is trained
only on form would fail a sufficiently sensitive test, because it
lacks the ability to connect its utterances to the world (Bender
and Koller 2020, p. 5188).

So the system cannot solve the symbol grounding problem, a term coined by
Harnad (1990). This reminiscent of

Quine’s indeterminacy of
translation (for an
overview, see, e.g., here or
here), so you may discuss
connections.

⇝ Do you find the Octopus though experiment convincing that is to
establish the above cited conclusion?

Also link to discussion in chapter 5

⇝ What about the concrete case of training a LLM on all available
Java code but without information about compilers or input-output
relations of specific programs? Is there no way to learn the mean-
ing relation J ⊆ E × I, which relates a piece e of Java code to the
mathematical function i that it computes?

Lecture 4 On the question of how the symbol grounding problem can
be solved, the next paper by Smolensky (1988) discusses how a neural
network based approach to modeling intelligence can give rise to symbolic
meaning by developing the concept of a subsymbol.
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The background of the debate is the strong divide, especially at the
time, in cognitive science between the traditional symbolic approach
and the connectionist approach. Here cognitive science—or cognitive
modeling—is understood as the building of formal models of how the
human mind/intelligence solves various cognitive tasks like vision, lan-
guage, planning, motor control, etc. As such, the goal is the same as for AI,
modulo the question of whether the formal model should operating simi-
lar to a human (cf. scientific aim of AI) or not necessarily (cf. technological
aim of AI).

The symbolic approach conceptualizes a cognitive task as an input-
output function and the formal model is a general algorithm of computing
this function. For example, for the cognitive task of route planning, the
input is a map with a current position and a desired destination and
the output is a route of how to get to this destination—the algorithm
would need to describe a general procedure of computing such a rule.
The conviction that this is the right approach to cognitive modeling is
expressed in:

“The Physical Symbol System Hypothesis. A physical symbol
system has the necessary and sufficient means for general in-
telligent action” (Newell and Simon 1976, p. 116).

The connectionist approach, on the other hand, conceptualizes a cogni-
tive task still as an input-output function, but at a lower level: The input is
a long list of real numbers describing, e.g., some sensory input or maybe a
numerical encoding of some symbolic information (e.g., a pixel image of
the map) and the output similarly is a numeric encoding for the intended
answer to the cognitive task. This input-output function is computed by a
neural network, as we have discussed them so far.

“The connectionist dynamical system hypothesis: The state of the
intuitive processor at any moment is precisely defined by a
vector of numerical values (one for each unit). The dynamics
of the intuitive processor are governed by a differential equa-
tion. The numerical parameters in this equation constitute the
processor’s program or knowledge. In learning systems, these
parameters change according to another differential equation”
(Smolensky 1988, p. 6, emphasis added).

The question is then how the symbolic approach and the connectionist
approach are related, i.e., how symbolic meaning may be represented and
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processed in neural networks. That is discussed at length in the paper, but
the key idea is:

“The entities in the intuitive processor with the semantics of
conscious concepts of the task domain are complex patterns of
activity over many units. Each unit participates in many such
patterns” (Smolensky 1988, p. 6, emphasis added).

So a symbolic meaning (like ‘the digit 7’) is represented by a large number
of subsymbols, i.e., activation patterns in the neural network (all the ways
neurons can be activated to give high probability to the neuron in the out-
put layer representing the digit 7). While the symbolic paradigm hence has
a simple semantics for its symbols but allows complicated operations on
these symbols, the connectionist paradigm only allows simple operations
on the neurons (weighted sums plus ReLU) hence the semantics for the
subsymbols must be complicated, to match the computational power of
the symbolic paradigm.

⇝ The symbolic approach operates at a higher level than the connec-
tionist approach. But Smolensky also introduces a third, yet lower
level: the neural level, i.e., the activity in an actual brain. In what
way are the artificial neural networks of connectionism more high-
level than the biological neural networks studied in neuroscience?
How do these three levels relate to Marr’s tri-level hypothesis?

⇝ In (13)(c–d), Smolensky hypothesizes when it may be possible to give
a symbolic semantics to a subsymbolic system, namely according to
whether or not the cognitive task involves conscious rule application
or just intuition. Can you think of examples? How does this dis-
tinction line up with Kahneman’s “Thinking, Fast and Slow” (2011):
System 1 (implicit, fast, parallel, instinctive, emotional) vs system
2 (explicit, slow, sequential, deliberative, logical)? For a concrete
example of a (symbolic) causal abstraction of a subsymbolic neural
network, see e.g. (Geiger et al. 2021).

⇝ If the cognitive agent (or intuitive processor) is a dynamical system,
which dynamical systems then are cognitive? In (19), Smolensky
mentions a necessary condition: the system should be stable under a
wide range of environmental conditions. Compare this to the discus-
sion of when a dynamical system performs computation (Piccinini
and Maley 2021).
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Readings

• This text contains
comments about race (e.g.,
p. 448) and gender
stereotypes (e.g., p. 434)
which should be reflected
on critically. Given the
classic status of the text, it
is included in the syllabus
here, but this is to flag that
these comments are not
silently endorsed.

A. M. Turing (1950). “Computing Machinery and Intelligence.”
In: Mind 59.236, pp. 433–460. DOI: https://doi.org/10.1093/
mind/LIX.236.433.

• E. M. Bender and A. Koller (2020). “Climbing towards NLU:
On Meaning, Form, and Understanding in the Age of Data.”
In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 5185–5198.

• P. Smolensky (1988). “On the proper treatment of connection-
ism.” In: Behavioral and brain sciences 11.1, pp. 1–74. DOI: https:
//doi.org/10.1017/S0140525X00052791. This is quite a dense text:

on a first reading focus on
understanding the key
concepts mentioned above.
This is a text worth
coming back to over and
over again.

Further material

• For an overview of the discussion around the Turing test, see: G.
Oppy and D. Dowe (2021). “The Turing Test.” In: The Stanford
Encyclopedia of Philosophy. Ed. by E. N. Zalta. Winter 2021.
Metaphysics Research Lab, Stanford University.

• Further reading on the idea that cognitive agents are dynamical
systems: T. van Gelder (1998). “The dynamical hypothesis in
cognitive science.” In: Behavioral and Brain Sciences 21.5, pp. 615–
628. DOI: 10.1017/S0140525X98001733.

• As mentioned above, an example of (symbolic) causal abstrac-
tion of a subsymbolic neural network: A. Geiger et al. (2021).
“Causal abstractions of neural networks.” In: Advances in Neural
Information Processing Systems 34, pp. 9574–9586. URL: https:
//arxiv.org/abs/2106.02997.
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3 AI and epistemology

This chapter’s big question

How do AI systems gain knowledge, if any?

Key concepts

• Empiricists/nurture vs rationalists/nature

• Domain-general vs domain-specific cognitive systems

• Moderate empiricism: allow ‘innate’ general inductive biases to
learn domain-specific knowledge.

• Control Problem: If several general modules (representing var-
ious cognitive faculties) are posited, how do they fruitfully
interact?

Lecture 5 When it comes to the question what kind of knowledge deep
neural networks gain, it makes sense to turn to philosophy—especially
epistemology—where this question of how we gain knowledge has been
discussed for millenia. There are two positions: Empiricists (like Locke)
say all knowledge comes from sensory experience, while rationalists (like
Leibniz) say that in getting knowledge we rely on our innate concepts
about the basic structure of the world. (And Kant aimed to combine
these two traditions.) Thus, it is suggestive to associate deep learning
with empiricists (neural networks only learn from data) and symbolic AI
with rationalists (the hard coded program of solving the task is the innate
knowledge about the world). (Neuro-symbolic integration then follows
Kant in combining the two approaches: see the further reading box.)
However, this chapter argues for a more nuanced moderate position. As remarked in footnote 28

of the text, this is in
reference to the famous
paper of Quine (1951)

“Two Dogmas of
Empiricism” (here’s a
lecture on it).

It
endorses the “new empiricist DoGMA [that a] (Do)main General Modular
Architecture is the best hope for modeling rational cognition in AI” (p. 26).

⇝ What is the main argument against the simple association of deep
learning with empiricism and symbolic AI with rationalism? Can
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you think of examples (e.g., CNNs)? Relate that to the concept of
inductive bias (we’ll come back to that in chapter 7).

⇝ Explain why “the current incarnation of the nativist-empiricist de-
bate in artificial intelligence presents us with a similar golden oppor-
tunity, in which we might attempt one of the rarest feats of intellec-
tual alchemy: the conversion of a timeless philosophical riddle into a
testable empirical question” (p. 8)? Do you agree? How does this re-
late to the continuum of views between empiricism and rationalism?

⇝ Which of the proposed theories in section 1.5 of how a (computa-
tional) model of cognition relates to the mind do you find most
convincing?

Readings

• C. J. Buckner (2023). From Deep Learning to Rational Machines:
What the History of Philosophy Can Teach Us about the Future of
Artificial Intelligence. New York: Oxford University Press. DOI:
https://doi.org/10.1093/oso/9780197653302.001.0001.
Chapter 1 “Moderate Empiricism and Machine Learning”.
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Further material

• Given this distinction between rationalist/symbolic and empiri-
cist/subsymbolic approaches to AI, wouldn’t it make sense to
combine the two (as Kant attempted)? Especially in light of the
fact that they have complementary benefits? To get the best of
both worlds, rather than sharp opposition? There is a movement
aiming to do precisely this: known as neurosymbolic computa-
tion. (Buckner cites ‘cognitive’ versions of this—namely ACT-R,
SOAR, Sigma, and CMC—on page 39.) A recent overview is:

A. d. Garcez and L. C. Lamb (2023). “Neurosymbolic AI: the 3rd
wave.” In: Artificial Intelligence Review. DOI: https://doi.org/
10.1007/s10462-023-10448-w

The main idea is that of neurosymbolic computation: “combine
robust learning in neural networks with reasoning and explain-
ability by offering symbolic representations for neural models”
(quoted from the abstract). Ideally in a neural-symbolic cycle:
compile a neural network from symbolic knowledge (in weights
or semantic loss function) and decompile the neural network
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into symbolic knowledge.
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4 AI and philosophy of science

This chapter’s big question

Referring to a 2008 Wired
article by Chris Anderson
with the title ‘The End of
Theory: The Data Deluge
Makes the Scientific
Method Obsolete’.

Is machine learning the ‘end of theory’?

Key concepts

• Opacity problem

• elementwise/localist vs holistic/distributed representation

• Model audit vs scientific inference

Lecture 6 We have discussed how neural networks can gain knowledge
about the world from the data they are trained on. This also is the goal
of science—understanding the world based on observations of it. So can
neural networks replace scientific theorizing, as the provocative quote
above suggests? We will discuss this in this chapter.

Long before the deep learning revolution, it has been noted that there
is an intriguing similarity between the fields of machine learning and
philosophy of science. Philosophy of science investigates the best way
of doing scientific induction: building a theory or model from observed
data. And machine learning does something very similar: training a
model (e.g., neural network) on collected data. Because of this, some even
identify the two fields (Korb 2004), while others describe their relation in
a more nuanced way as a dynamic interaction (Williamson 2004). (Some
new progress in machine learning may inform philosophy of science,
and at other times philosophy of science may help theorizing in machine
learning.)

However, there also is a crucial difference between modern deep learn-
ing and science: the former produces opaque models that solely focus on
prediction, but scientific models should also offer explanations of the phe-
nomenon they describe. This point is forcefully made by Noam Chomsky
in the discussion of ChatGPT:

Perversely, some machine learning enthusiasts seem to be
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proud that their creations can generate correct “scientific” pre-
dictions (say, about the motion of physical bodies) without
making use of explanations (involving, say, Newton’s laws
of motion and universal gravitation). But this kind of predic-
tion, even when successful, is pseudoscience. While scientists
certainly seek theories that have a high degree of empirical
corroboration, as the philosopher Karl Popper noted, “we do
not seek highly probable theories but explanations; that is to
say, powerful and highly improbable theories.”

The theory that apples fall to earth because that is their natural
place (Aristotle’s view) is possible, but it only invites further
questions. (Why is earth their natural place?) The theory that
apples fall to earth because mass bends space-time (Einstein’s
view) is highly improbable, but it actually tells you why they
fall. True intelligence is demonstrated in the ability to think
and express improbable but insightful things. (Chomsky et al.
2023)

The main reading discusses this problem that even if modern deep
learning models predict the scientific phenomenon near perfectly, they
are still not the kind of models that scientists favor. This is because these
AI models are very complex (so it is hard to ‘understand’ the model)
and it is unclear how the parts of the model relate to the parts of the
phenomenon. This is known as the opacity problem (Boge 2021; Sullivan
2022). Interpretable machine learning and explainable artificial intelligence
aim to make AI models more ‘understandable’. But it is not clear whether
these methods can be used to draw scientific inference about the real
phenomenon from the AI model. The paper discusses why and how this
problem can be addressed. This recently turned into

an online book, of which
you can also read, e.g., the
first part.

⇝ Explain the distinction between elementwise/localist representation
and holistic/distributed representation. Isn’t it a problem if we do
not have a compositional understanding of our model—isn’t this the
hallmark of science?

⇝ What is the differences between “auditing ML models” and “lever-
aging them for scientific inference”.

⇝ How can the ‘property descriptors’ bdige this gap, intuitively speak-
ing?
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Readings

• T. Freiesleben, G. König, et al. (2024). “Scientific Inference with
Interpretable Machine Learning: Analyzing Models to Learn
About Real-World Phenomena.” In: Minds and Machines 34.3.
DOI: https://doi.org/10.1007/s11023-024-09691-z This recently turned into

an online book.

Further material

• The above mentioned papers on the relation between machine
learning and philosophy of science:

K. B. Korb (2004). “Introduction: Machine Learning as Philoso-
phy of Science.” In: Minds and Machines 14, pp. 433–440. DOI:
https://doi.org/10.1023/B:MIND.0000045986.90956.7f.

J. Williamson (2004). “A Dynamic Interaction Between Machine
Learning and the Philosophy of Science.” In: Minds and Ma-
chines 14, pp. 539–549. DOI: https://doi.org/10.1023/B:
MIND.0000045990.57744.2b.

• The book on machine learning for science:

T. Freiesleben and C. Molnar (2024). Supervised Machine Learning
for Science. How to stop worrying and love your black box. URL:
https://ml-science-book.com/.
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5 AI and philosophy of language

This chapter’s big question

Do Large Language Models have linguistic and cognitive com-
petence or are they just stochastic parrots? The term ‘stochastic

parrot’ is from the title of
the paper by Bender,
Gebru, et al. (2021).Key concepts

•

Literature

• R. Millière and C. Buckner (2024a). “A Philosophical Introduction
to Language Models – Part I: Continuity With Classic Debates.” In:
arXiv: 2401.03910 [cs.CL]. URL: https://arxiv.org/abs/2401.
03910

• R. Millière and C. Buckner (2024b). “A Philosophical Introduction
to Language Models – Part II: The Way Forward.” In: arXiv: 2405.
03207 [cs.CL]. URL: https://arxiv.org/abs/2405.03207

• Great introductory videos to LLMs: part 1, part 2, and part 3.
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6 AI and ethics

This chapter’s big question

AI systems are just objective computer models, so they must be
fair, right?

There already are dedicated courses on the ethics of AI at LMU, so
we focus here on some specific aspect: algorithmic fairness. We do still
provide references to general overviews on ethics of AI.

Key concepts

• Cf. the machine learning
pipeline: here we might
call it the
‘prediction-model
construction pipeline’.

Policy goals as prediction tasks, and the potentially problematic
modeling assumptions behind this (overarching goal, popula-
tion choice, decision space).

• Bias in data: statistical and societal

• Model architecture: interpretability, perturbation, choice of fea-
tures.

• Model evaluation assumptions (no interference, uniform, simul-
taneous)

• Identifying advantaged and disadvantaged groups: intersec-
tionality (Crenshaw)

• Oblivious (purely probabilistic) vs non-oblivious (also including
similarity metric between individuals and causality) fairness
definitions.

• Oblivious: With D = decision, S = predicted score, A = sen-
sitive variable, X = insensitive variable, Y = true outcome, (1)
D⊥A|Y = 0, (2) D⊥A|Y = 1, (3) Y⊥A|D = 0, (4) Y⊥A|D = 1, (5)
D⊥A, (6) D⊥A|X.

• Impossibility results: The seminal one that equalized odds and
predictive parity are jointly impossible (Chouldechova 2017;
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Kleinberg et al. 2016). Other ones to include a notion of counter-
factual fairness using causal models (Beigang 2023).

Literature:

• An encyclopedia overview on Ethics of AI:

J.-S. Gordon and S. Nyholm (n.d.). “Ethics of Artificial Intelligence.”
In: The Internet Encyclopedia of Philosophy. Available at: https://iep.
utm.edu/ethic-ai/ (accessed: 6 Mar 2022).

• A famous paper on the ethics of Large Language Models.

E. M. Bender, T. Gebru, et al. (2021). “On the Dangers of Stochas-
tic Parrots: Can Language Models Be Too Big?” In: Proceedings of
the 2021 ACM conference on fairness, accountability, and transparency,
pp. 610–623.

• An overview of the field of algorithmic fairness.

S. Mitchell et al. (2021). “Algorithmic Fairness: Choices, Assump-
tions, and Definitions.” In: Annual Review of Statistics and Its Applica-
tion 8.1, pp. 141–163. DOI: 10.1146/annurev-statistics-042720-
125902. eprint: https://doi.org/10.1146/annurev-statistics-
042720 - 125902. URL: https : / / doi . org / 10 . 1146 / annurev -

statistics-042720-125902.

• A discussion of the interplay between formalized technical discourse
of fairness and informal ethical discourse of fairness.

P. Schwöbel and P. Remmers (2022). “The Long Arc of Fairness:
Formalisations and Ethical Discourse.” In: Proceedings of the 2022
ACM Conference on Fairness, Accountability, and Transparency. FAccT
’22. Seoul, Republic of Korea: Association for Computing Machinery,
pp. 2179–2188. DOI: 10.1145/3531146.3534635. URL: https:

//doi.org/10.1145/3531146.3534635.

• A recent impossibility result showing that three plausible require-
ments for a predictive algorithm to be fair (equalized odds, predictive
parity, and counterfactual fairness) are in fact jointly inconsistent. It
can be seen as a continuation of the quite short section 5 of Mitchell
et al. (2021) discussing causal reasoning in fairness definitions.

F. Beigang (2023). “Yet Another Impossibility Theorem in Algorith-
mic Fairness.” In: Minds and Machines. DOI: https://doi.org/10.
1007/s11023-023-09645-x
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7 Theory of AI: Power and Limits

This chapter’s big question

Is there anything AI models cannot do?

Key concepts

• Stochastic learning theory (PAC learnability, No Free Lunch
theorems)

• Universal approximation theorems

We start this part of the course with a short background lecture on clas-
sic computability theory (Church–Turing thesis, Halting problem, Gödel
Incompleteness, complexity theory) and a bit on extension to continuous
computation (computable analysis, analog computation, Shannon–Pour-El
thesis).

Maybe the two most central classical theorems from the theory of AI
are the No Free Lunch theorem and the Universal Approximation theorem.
Their meaning and consequences are discussed in the next two readings,
respectively. add brief take-home message of

the two papers

• T. F. Sterkenburg and P. D. Grünwald (2021). “The no-free-lunch
theorems of supervised learning.” In: Synthese 199.3-4, pp. 9979–
10015. DOI: 10.1007/s11229-021-03233-1

• M. J. Colbrook et al. (2022). “The difficulty of computing stable
and accurate neural networks: On the barriers of deep learning and
Smale’s 18th problem.” In: Proceedings of the National Academy of Sci-
ences 119.12, e2107151119. DOI: 10.1073/pnas.2107151119. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.2107151119.
URL: https://www.pnas.org/doi/abs/10.1073/pnas.2107151119

The Universal Approximation theorem shows that for every (con-
tinuous) function describing the true input-output relation in the
world, there is a neural network with a weight setting that approxi-
mates this function to any desired accuracy. However, the paper asks
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whether a learning algorithm (like backpropagation) can actually
find this weight setting via learning from finite data about the true
function. They provide a negative results: Despite the existence of a
neural network

“We show that there are problems where stable and accurate NNs
exist, yet no algorithm can produce such a network. Regardless
of how many computational resources or data one throws at the
problem, this impossibility result holds.” Colbrook 2022

Just some further readings are as follows. We will go into much more
detail in the course Advanced Topics in the Foundations of AI that I will offer
next semester.

• For some further computability-theoretic analysis of the inverse
problems studied in the preceding paper, see

H. Boche et al. (2022). Inverse Problems Are Solvable on Real Number
Signal Processing Hardware. arXiv: 2204.02066 [eess.SP].

• For a general analysis of the capabilities of analog computation, see

M. B. Pour-El (1974). “Abstract computability and its relation to the
general purpose analog computer (some connections between logic,
differential equations and analog computers).” In: Transactions of the
American Mathematical Society 199, pp. 1–28. DOI: https://doi.org/
10.2307/1996870

(For an overview of analog computation, see Bournez and Pouly
2021.)

• For the use of computability theory in the study of human intelli-
gence (aka cognitive science :-)), see

I. Van Rooij (2008). “The Tractable Cognition Thesis.” In: Cogni-
tive Science 32.6, pp. 939–984. DOI: 10.1080/03640210801897856.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1080/

03640210801897856
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8 Reliable AI

This chapter’s big question

What can we do about the black box nature of neural networks?

Key concepts

• Interpretable AI: Reasons for requiring interpretability, inter-
pretability as transparency, interpretatability as post-hoc expla-
nation.

• Explainable AI

• Robustness in AI

Literature: Interpretable AI

• Z. C. Lipton (09/2018). “The Mythos of Model Interpretability.”
In: Commun. ACM 61.10, pp. 36–43. DOI: 10.1145/3233231. URL:
https://doi.org/10.1145/3233231

Reasons for requiring interpretability: trust (that model will perform
well, though hard to make precise), causality (infer true causal re-
lation in the world from the correlations detected by the model),
transferability (to new domains of application, still knowing that the
model will work).

Interpretability as transparency: simulatability (a human can simulate
the model at once), decomposability (each part of the model admits
intuitive interpretation; cf. elementwise/localist representation), al-
gorithmic transparency (the learning algorithm with which the model
is built is understood well: provably converges to best solution, etc.).
Humans aren’t transparent in any of these senses. Linear models
are in general only interpretable in the last sense, and the input
features that they used might be processed while they are readily
interpretable for neural networks.

Interpretability as post-hoc interpretation/explanation: Provide addi-
tional information to elucidate why the model provided a certain
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output, without necessarily being faithful to the underlying mech-
anism producing the output (hence this can be misleading). If hu-
mans are interpretable, it is in this sense. Examples: text explanation
(provide a verbal explanation of model output; no guarantee of
correctness), visualization (e.g., visualize high-dimensional represen-
tations in 2D images), local explanation Since the publication of the

paper, many more local
explanation methods are
known: counterfactual
explanation, SHAP,
intergrated gradients, etc.
But they also face certain
impossibilities: see
Bilodeau et al. (2024).

(e.g., saliency maps showing
which parts of the input were most important to the output in the
sense that changing them will most likely change the output; can be
misleading), explanation by example (e.g., which datapoints are most
similar/important for the model behavior).

• F. Doshi-Velez and B. Kim (2017). Towards A Rigorous Science of
Interpretable Machine Learning. arXiv: 1702.08608 [stat.ML]

• C. Rudin (2019). “Stop explaining black box machine learning mod-
els for high stakes decisions and use interpretable models instead.”
In: Nature Machine Intelligence 1, pp. 206–215. DOI: https://doi.
org/10.1038/s42256-019-0048-x

Literature: Explainable AI

• T. Miller (2019). “Explanation in artificial intelligence: Insights from
the social sciences.” In: Artificial Intelligence 267. DOI: https://doi.
org/10.1016/j.artint.2018.07.007

• J. Woodward and L. Ross (2021). “Scientific Explanation.” In: The
Stanford Encyclopedia of Philosophy. Ed. by E. N. Zalta. Summer 2021.
Metaphysics Research Lab, Stanford University

• B. Mittelstadt et al. (2019). “Explaining Explanations in AI.” in: Pro-
ceedings of the Conference on Fairness, Accountability, and Transparency.
FAT* ’19. Atlanta, GA, USA: Association for Computing Machin-
ery, pp. 279–288. DOI: 10.1145/3287560.3287574. URL: https:

//doi.org/10.1145/3287560.3287574

Literature: Robust AI

• T. Freiesleben and T. Grote (2023). “Beyond generalization: a theory
of robustness in machine learning.” In: Synthese 202.109. DOI: https:
//doi.org/10.1007/s11229-023-04334-9
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