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Preface

This is the reader for the course Advanced Topics in the Foundations of AI
given during the summer semester 2024 at LMU Munich as part of the
Master in Logic and Philosophy of Science. The reader is written as the course
progresses. A website for the course is found at

https://levinhornischer.github.io/FoundAI/.

Comments I’m happy about any comments: spotting typos, finding
mistakes, pointing out confusing parts, or simply questions triggered by
the material. Just send an informal email to Levin.Hornischer@lmu.de.

Content In recent years, artificial intelligence and, in particular, machine
learning made great—but also disconcerting—progress. However, their
foundations are, unlike other areas of computer science, less well under-
stood. This situation is sometimes compared to being able to build steam
engines without having a theory of thermodynamics.

This seminar is about the mathematical foundation of AI. After a review
of the classical theory (Computability Theory, No-Free-Lunch Theorem,
Universal Approximation Theorem, etc.), we read some recent research
papers to get an overview of some current approaches to the foundations
of AI.

Objectives In terms of content, the course aims to convey and overview
of the foundations of AI—including both classic material and cutting-edge
research. In terms of skills, the course aims to teach the ability to both
mathematically and philosophically assess the different approaches to the
foundations of AI.

Prerequisites In order to appreciate the literature, the course requires
basic familiarity with mathematics (calculus, linear algebra, probability
theory), logic (including, ideally, computability theory), and AI (neural
networks). Some papers also use more advanced concepts from topology,
probability theory, or category theory, so you should also be prepared to
read up on those. But they are not assumed: the seminar sessions are,
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among others, meant to get clearer on these concepts. Programming skills
will of course be useful, but will not be assumed.

Schedule and organization The course is organized as a seminar. Hence,
for each session, we have assigned readings, which we then discuss during
the session. The reading for each week is announced in the schedule on the
course’s website. The readings are roughly organized by topic, forming
the chapters of this reader.

Background material Some helpful short explainer videos on AI are
found here. A excellent mini series on (the mathematics of) neural net-
works is found here.

Moreover, the material of my companion course on the Philosophy
and Theory of AI might also be helpful. You can take the present course
independently of that companion course and vice versa, but they do
complement each other. The companion course is more introductory and
looks at a broader range of philosophical issues connected to AI and how
to theorize about them, while the present course focuses specifically on
the more mathematical foundations of neural networks.

A recent edited collection on the mathematical foundations of AI is
Grohs and Kutyniok (2022).

Layout These notes are informal and partially still under construction.
For example, there are margin notes This is a margin note.to convey more casual comments
that you’d rather find in a lecture but usually not in a book. Todo notes
indicate, well, that something needs to be done. References are found at This is a todo note

the end.

Notation Throughout, ‘iff’ abbreviates ‘if and only if’.
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1 Introduction

Summary

We give an outlook of the course and of this document.

The field of AI is typically characterized along the lines of aiming to
build “machines that can compute how to act effectively and safely in
a wide variety of novel situations” (Russell and Norvig 2021, p. 19). In
chapter 2, we briefly collect basic terminology and concepts in AI, to make
sure we’re all on the same page.

Regardless of the definition, it is helpful to distinguish two main tra-
ditions in AI. They go by varying names, with different connotations
depending on the community that uses them, including the following.

1. Symbolic AI: classicist, logic-based, Good Old-Fashioned AI (GOFAI),
etc.

Example: An algorithm or computer program that, given as input
a position in a game of chess, outputs the next best move. This
algorithm was written by a programmer.

2. Subsymbolic AI: connectionist, non-logicist, machine learning, deep
learning, etc.

Example: A neural network that, given as input a pixel image of
a handwritten digit, outputs the digit depicted on the image. The
neural network was trained to become better at this mapping using
thousands of data points, i.e., input images labeled with the digit
depicted on them.

(Some might distinguish a third tradition—statistical AI—which, in a sense,
sits between the two preceding traditions: Like symbolic AI it typically
has ‘interpretable’ variables, but they are now continuous random vari-
ables, and like subsymbolic AI it typically processes the information in a
continuous way.)

For symbolic AI, we have a pretty good theory due to mathemati-
cal/philosophical logic and computability theory. We review this in chap-
ter 3. It gives a good idea of what we also would expect of a theory of
AI.
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For subsymbolic AI—which is most of modern AI—we, however, lack a
good theory. So in this course, we mostly focus on approaches to provide
such a theory. In chapter 4, we review the main results that the standard
theory of machine learning—which is mostly statistical learning theory—
can deliver. But we also look at what is still missing for the concrete case
of the neural networks that modern AI is built on.

The remaining chapters—as listed in the table of contents—then are
about different approaches to fill these gaps in the standard theory of
machine learning, or approaches that rethink this theory all together. There
is more material than we will be able to cover: especially from the later
chapters we will pick the topics based on your interests.
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2 Background

Readings

• A textbook introduction to the field of AI: Russell and Norvig
(2021, ch. 1).

Key concepts

• History of AI: Ada Lovelace, Alan Turing, McCulloch & Pitts,
Logic Theorist, Dartmouth workshop, summers and winters,
big data, deep learning revolution.

• Types of AI: symbolic, subsymbolic, statistical

• Definitions of AI: acting humanly (Turing test), thinking hu-
manly (cognitive modeling), thinking rationally (logic, proba-
bility), acting rationally (rational agent; perfect vs limited ratio-
nality)

• Types of learning tasks: Supervised learning, unsupervised
learning, reinforcement learning. Machine learning pipeline
(conceptualization, data, model, deployment).

• Key concepts of artificial neural networks: neurons, layers, feed-
forward/recurrent, weights, activation function, loss function,
backpropagation, learning rate, local/global minima (equilib-
rium), regularization, overfitting/underfitting.

In this session, we discuss the main reading to get an understanding of
each of the key concepts—the basic AI terminology—mentioned above.
These key concepts are further illuminated in the additional material
mentioned below.

Elaborating on the rational agent idea, Russell and Norvig (2021) write:

In a nutshell, AI has focused on the study and construction of
agents that do the right thing. What counts as the right thing is
defined by the objective that we provide to the agent. This gen-
eral paradigm is so pervasive that we might call it the standard
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model. . . . [Though,] the standard model assumes that we will
supply a fully specified objective to the machine. . . . The prob-
lem of achieving agreement between our true preferences and
the objective we put into the machine is called the value align-
ment problem . . . Ultimately, we want agents that are provably
beneficial to humans (Russell and Norvig 2021, 22–21, emphasis
altered).

Further material

• A very accessible overview, written at the beginning of the deep
learning revolution: Boden (2016, ch. 1 and 4).

• The Stanford Encyclopedia of Philosophy entry on artificial
intelligence: Bringsjord and Govindarajulu (2024).

• Also see the background material mentioned in the preface
(explainer videos and companion course).
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3 Foundations of symbolic AI

Readings

• A short overview of symbolic AI: Flasiński (2016, ch. 2)

• An overview of computability and complexity theory: Immer-
man (2021)

Key concepts

• Turing machine

• Church–Turing thesis

• Halting problem

• Entscheidungsproblem

• Tiling problems

• Gödel’s incompleteness theorems

• Computational complexity theory: P vs NP
I might add the contents of the
slides that I presented in class
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4 Standard theory of machine learning

Readings

• On statistical learning theory and the No-Free-Lunch theorem:
Shalev-Shwartz and Ben-David (2014), chapters 2–3 (basic set
up), chapter 5 (No-Free-Lunch), sections 6.1–4 (fundamental
theorem of statistical learning theory).

• On the approximation theorem: One of the classics, Hornik et al.
(1989).

Key concepts

• Statistical learning theory

• PAC learnability

• No-Free-Lunch theorem

• Bias-complexity tradeoff

• VC-dimension and the fundamental theorem of PAC learning

• Universal approximation theorem

Statistical learning theory Statistical learning theory was developed
as the theory of machine learning. There is some disconnect between
theory and practice, which we will discuss in the next chapter, but first we
introduce this theory here.
The statistical learning framework:

• A learner gets input x from some domain X (e.g., a particular papaya)
and they need to label this input with a label h(x) = y from the label
space Y, here the only labels are 0 (e.g., not tasty) and 1 (e.g., tasty).
The learner will see finitely many training data (x1,y1), . . . , (xm,ym)

of input-output pairs, and based on that suggest a general rule
h : X → Y. We now formalize this idea.
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• The domain set X. Typically the elements are vectors, e.g., x =

(0.1, 0.7) saying that the object x is described completely by fea-
ture 0 (e.g., the papayas color) having value 0.1 and feature 1 (e.g.,
the papayas softness) having value 0.7.

• The label set Y. Typically Y = {0, 1}.

• The training data S = {(x1,y1), . . . , (xm,ym)} which is a finite subset
of X×Y. These are the examples that the learner has access to (e.g., the
m-many papayas they have bought, checked the color and softness,
and then tasted them to determine whether they were tasty or not).
Elements of S are also called data points or training examples, and S

is also called training set.

• The learner’s output: Based on the training data, the learner has to
output a prediction rule, i.e., a rule for how to label points from the
domain set. This rule is described as a function h : X → Y, which is
also called predictor, hypothesis, or classifier.

• The learning algorithm A: Typically, the learner will follow a general
learning algorithm that works not just for the specific training set S
but also for other ones. So it is a function A that takes as input finite
subsets of X× Y and outputs a predictor A(S) : X → Y. One learning
algorithm that we introduce below is empirical risk minimization.

• Sampling: We assume there is a probability distribution D on the
domain set X which describes how likely it is that we see a particular
point x (e.g., how likely it is that the learner gets papaya x when
going to the market). One says D is a (probabilistic) data-generation
model. Importantly, the learner has no access to this probability
distribution. Rather D describes how the world actually is.

• True risk. The error of a classifier h is the probability that it does not
predict the correct label. Formally, we assume there is a true labeling
function f : X → Y (that the learner aims to find) and the error of h is

LD,f(h) := D({x ∈ X : h(x) ̸= f(x)}).

This is also called generalization error, risk, or true error (to dis-
tinguish it from the empirical error/risk that we introduce later).
(Below, in the NFL Theorem, we generalize the assumption of a true
function f and instead work with a probability distribution over
X× Y.)

9



• Empirical risk. The true risk is defined with respect to the distribution
D and the true labeling function f, both of which the learner has no
access to. The learner can only calculate the error of their predictions
on the training dataset:

LS(h) :=
1
m

∣∣{i ∈ {1, . . . ,m} : h(xi) ̸= yi

}∣∣.
• Empirical Risk Minimization (ERM) is the learning paradigm of com-

ing up with a predictor h that minimizes the empirical risk LS(h).
This has to be restricted though: If the learner is allowed to pick
any predictor h, they can pick the h which, on input x, predicts y

if (x,y) is in the training set and 0 otherwise. This minimizes the
empirical risk (it is 0), but it generalizes badly to points x outside of
the training set (it all assigns them the same label): one says h overfits
the data. To avoid this, one fixes a set H of allowed predictors (and
the just mentioned h wouldn’t usually be allowed). This H is called
the hypothesis class. The learner has to choose this in advance, before
seeing the data. This choice of H is the inductive bias (or, positively,
prior knowledge) of the learner: they are biased to certain predictors
before seeing data (or know a priori that they will better fit the data).
(This will lead to the bias-complexity trade-off that we’ll discuss
later.)

PAC learning:

• What would it mean for a learner—with their choice of hypothesis
class H—to be ‘good’, i.e., to produce correct prediction rules? We
want that, Though one might ask:

why quantify over all D
and f and not just those
that are likely for the task?
E.g., for the papayas some
distributions and labelings
are more likely than others.
(Cf. margins theory
discussed by Belkin (2021,
sec. 3.3).

no matter what the true distribution D and labeling func-
tion f are, given a required confidence parameter δ and accuracy
parameter ϵ, there is a number of samples m = m(δ, ϵ) such that,
if we sample m-many examples from D labeled with f, then with
confidence 1 − δ the learner knows that they are correct up to ϵ,
provided there is a correct hypothesis in the first place. One says: we
are probably approximately correct (PAC). The formal definition is:

• A hypothesis class H is PAC-learnable if there is a function mH :

(0, 1)× (0, 1) → N and a learning algorithm A such that: For every
ϵ, δ ∈ (0, 1), for every probability distribution D over X, and for
every labeling function f : X → {0, 1}, if the realizability assumption
holds (i.e., there is h∗ ∈ H with LD,f(h

∗) = 0), then, when running
A on m ⩾ m(ϵ, δ) i.i.d. (independently and identically distributed)
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examples sampled with D and labeled with f, the algorithm return
a hypothesis h such that, with probability of at least 1 − δ (over the
choice of the examples), LD,f(h) ⩽ ϵ.

• This can be generalized by dropping the realizability assumption,
going beyond the binary label case (multiclass and regression, using
more general loss functions).

The No-Free-Lunch and the PAC Learning theorems No-Free-Lunch
Theorem (NFL Theorem):

• We avoided the overfitting problem of the ERM learning paradigm
by making explicit the inductive bias/prior knowledge of the learner
in the form of a hypothesis class H. One may ask: is this really
necessary, i.e., can there be a learner who is successful without using
any task-specific prior knowledge and can thus solve any task? One
way to interpret the NFL theorem is that it answers ‘no’: there cannot
be such a universal learner. For a discussion of

interpretations of the NFL
theorem, see the further
reading below
(Sterkenburg and
Grünwald 2021).

• A bit more precisely, the NFL Theorem takes a learning task to be
given by an unknown distribution P over X× Y, and the goal of the
learner is to find a predictor h : X → Y whose risk LP(h) is small. As
mentioned, this generalizes the framework so far: So far we had a
distribution D on X and a true label function f. This determines the
distribution P on X× Y according to which the probability of (x,y) is
0 if y ̸= f(x) and otherwise the probability of x according to D. Now
we allow any distribution P on X× Y, so we don’t assume there is a
single true label function, but only a conditional probability of how
likely a label is given the input. Accordingly, the loss is

LP(h) = P({(x,y) ∈ X× Y : h(x) ̸= y},

which is also known as 0-1 loss. The NFL Theorem then says: It is not
the case that there is a learning algorithm A and a training set size m

such that, for every distribution P over X× Y, if A receives m-many
i.i.d. samples from P, there is a high chance it outputs a predictor h
that has low risk. In other words, for every learner, there is a task on
which it fails, even though another learner succeeds.

• Formally, the NFL theorem is stated as follows. Let A be any learning
algorithm for the task of binary classification with respect to the 0-
1 loss over a domain X. Let m be any number smaller than |X|/2,
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representing a training set size. Then, there exists a distribution P

over X× {0, 1} such that:

1. There exists a function f : X → {0, 1} with LP(f) = 0, but

2. With probability of at least 1/7 over the choice of S ∼ Pm we
have that LP(A(S)) ⩾ 1/8.

So A fails on this task while the ERM learner with hypothesis class
H = {f} succeeds.

Bias-complexity tradeoff

• Since we don’t have a universal learner—who performs best possible
on any task—, we cannot get around analyzing a learner on a specific
task. So we want to get some guarantee how bad the true error of
the learner is. As we’ll describe now, we can split this error up into
two parts, but there is a tradeoff in that improving one part tends to
worsen the other, and vice versa.

• Error decomposition. We can analyze the error LP(A(S)) of our learn-
ing algorithm/ERM predictor A on a given dataset S as ϵapp + ϵest

with

ϵapp := min
h∈H

LP(h) ϵest := LP(A(S)) − ϵapp,

where ϵapp is the approximation error (the minimal risk achievable by
a predictor from the hypothesis class) and ϵest is the estimation error
(the difference between the empirical minimal risk LP(A(S)) and the
true minimal risk ϵapp).

• Bias-complexity tradeoff. To reduce the error LP(A(S)) we hence want
to reduce both the approximation error and the estimation error.
However, this comes at a tradeoff:

1. To reduce the approximation error, we want a large, more com-
plex hypothesis class; but, as we saw, this may lead to overfitting
(empirical risk is low, but true risk is high), so the the estimation
error can be high.

2. To reduce the estimation error, we might rather choose a small,
more biased hypothesis class, but this results in a high approx-
imation error, because the predictors are now underfitting the
data.
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So learning theory studies how to find rich hypothesis classes H

for which we still have reasonable estimation errors. We will fur-
ther discuss this for neural networks in chapter 5 (the universal
approximation theorem will show that—as the name suggests—their
approximation error is zero).

VC-dimension and the fundamental theorem of PAC learning:

• How can we ensure our learner has a low error? Reducing the
approximation error is a matter of picking the right prior knowledge
encapsulated as a hypothesis class. For the estimation error, the key
is to realize that PAC learnability bounds the estimation error. Under the realizability

assumption, the
approximation error is
zero, so the estimation
error can be bounded by ϵ

with probability 1 − δ

when sampling a dataset of
size ⩾ m(δ,ϵ).

So we
would like to have a guarantee for PAC learnability. This is provided
by the so-called VC-dimension, which is defined as follows.

• First, some helpful terminology: If H is a hypothesis class and C ⊆ X,
then H shatters C if {h ↾ C : h ∈ H} = YC, where h ↾ C is the
restriction of the function h : X → Y to the set C, and YC is the set of
all functions from C to Y.

• The VC-dimension The idea is: If H shatters a
set C of size 2m, then we
cannot learn H using m

examples: all ways of
labeling the other m
instances in C are possible
according to some
hypothesis in H, i.e., prior
knowledge doesn’t exclude
any of those.

of a hypothesis class H is the maximal size of a
finite set C ⊆ X that can be shattered by H. If H shatters sets of
arbitrarily large size, it has infinite VC-dimension.

• The fundamental theorem: Let H be a hypothesis class of functions
from X to {0, 1}, and let the loss function be the 0-1 loss. Then the
following are equivalent

1. H is PAC learnable

2. Any ERM rule is a successful PAC learner for H

3. H has a finite VC-dimension. The full version of the
theorem has some further
equivalent conditions.In fact, if the VC-dimension of H is d < ∞, there are constants C1

and C2 such that H is PAC learnable with sample complexity

C1
d+ log(1/δ

ϵ
⩽ m(ϵ, δ) ⩽ C2

d log(1/ϵ) + log(1/δ)
ϵ

.

The Universal Approximation Theorem There are several universal ap-
proximation theorems. Here we discuss an early one by Hornik et al.
(1989).1 (For a modern textbook version including a proof sketch, see

1Interestingly, Hornik et al. (1989, p. 360) mention Kolmogorov’s superposition theorem
which has a similar form of the approximation theorem but would require a possibly
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Berner et al. (2022, thm. 1.16 on p. 16); and the further reading Kratsios
2021 below.)

It considers the set Σr of functions Rr → R that can be realized by
a feed-forward neural network with r-many input neurons, one output
neuron, and one hidden layer using an activation function G : R → R that
is non-decreasing and converges to 0 (resp., 1) as its argument goes to −∞
(resp., +∞).

Intuitively, the universal approximation theorem should say that the
functions in Σ can approximate any non-pathological function f : Rr → R
arbitrarily well. This is made precise as follows.

The ‘non-pathological’ functions are the measurable functions. We don’t
state the precise definition here, since this would take us a bit astray. For
us it suffices to know that basically any function that naturally occurs is
measurable. So let Mr be the set of all measurable functions Rr → R. Any
function realized by a neural network is measurable, so Σr ⊆ Mr.

Now how to say that Σr can approximate any function in Mr arbitrarily
well? For that, we will define a metric ρ on Mr, i.e., a way to measure the
distance d = ρ(f,g) ∈ {x ∈ R : x ⩾ 0} between two functions f,g ∈ Mr.
Then to say that Σr can approximate any function in Mr is to say that Σr

is dense in Mr, i.e., for every f ∈ Mr and for every ϵ > 0, there is g ∈ Σr

such that ρ(f,g) < ϵ.
So it remains to define the metric ρ on Mr. The idea is that two functions

f,g ∈ Mr are close if “there is only a small probability that they differ
significantly” (Hornik et al. 1989, p. 361). This is made precise as by fixing
a probability measure µ on Rr and defining

ρµ(f,g) := inf
{
ϵ > 0 : µ

(
{x : |f(x) − g(x)| > ϵ}

)
< ϵ

}
.

So for a given ‘significance level’ ϵ > 0, we check on how many inputs
x ∈ Rr our functions f and g differ by more than ϵ. If the probability
of encountering such an x is low, i.e., smaller than ϵ, then our functions
pass the test and are at least ϵ-close; otherwise they are more than ϵ far
apart. Now we look for the smallest ϵ’s for which our functions are at least
ϵ-close. The infimum of all of them then is the distance between f and g.

Now the universal approximation theorem says (Hornik et al. 1989,
thm. 2.4 on p. 362):

different activation function for every neuron (rather than a single one for all neurons as it
is done in feed-forward neural networks). This idea has been taken up very recently (Liu
et al. 2024) investigating a neural network architecture with different, learnable activation
functions.
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• For any probability measure µ on Rr, the set Σr of functions realized
by a neural network is ρµ-dense in Mr.

Further material

• A discussion of the no-free-lunch theorem: Sterkenburg and
Grünwald (2021).

• A modern, more general approach to the universal approxima-
tion theorem: Kratsios (2021).
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5 Refining statistical learning theory

Readings

• Berner et al. (2022), pages 1–31.

• Belkin (2021), sections 1–3.

Key concepts

• Approximation error, generalization error, and optimization
error.

• The generalization puzzle/problem

• Interpolation and over-parametrization

• Double descent generalization curve

Berner et al. (2022) describe in section 1.1.2 (i.e., pages 5–23) the insights
that statistical learning theory can provide when it is applied to neural
networks. On page 13, they analyze the true error of a neural network into
three components. (The first two are closely related to the approximation
and estimation error that we considered in the general setting; the third is
new.)

• The approximation error: how far the best possible prediction rule
of the network is away from the truly best possible prediction rule,
i.e., the Bayes-optimal function.

• The (uniform) generalization error: among the prediction rules of
the network, the maximal difference between the true error of the
prediction rule and the empirical error of the prediction rule.

• The optimization error: the difference in empirical error between the
prediction rule found by the neural network after training and the
prediction rule that minimizes the empirical risk.

The third type of error is added because with neural networks we do al-
gorithmic empirical risk minimization (in the words of Belkin (2021, p. 217)):
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backpropagation (i.e., the implementation of stochastic gradient descent
for neural networks) is an algorithm that aims to find the prediction rule
(i.e., the set of weights) that minimizes empirical risk (i.e., the error on the
training set). The general theory that we covered previously is algorithm-
independent in the sense that it only assumes that an (ERM-) learner outputs
a prediction rule with minimal empirical risk but doesn’t say so how this
rule is found.

On pages 13–23, the then provide theorems to bound these errors.

• The approximation error is bound by the universal approximation
theorem, which we already discussed.

• The generalization error is bound—using the VC-dimension—with
high probability by√

p log(p)
m

,

where p is the number of parameters of the neural network and m

is the size of the training set. (But: when there are more parameters
than training samples, as is common for neural networks, this bound
is vacuous. This is picked up as an open question below.)

• The optimization error For such convergence
guarantees also see the
Polyak–Łojasiewicz
condition in Belkin (2021,
sec. 4.1).

is bound by convergence guarantees of stoch-
astic gradient descent. (But: the assumptions of these guarantees
are typically some form of convexity that, however, is usually not
satisfied for neural networks. Again this is picked up as an open
question.)

In section 1.1.3 (i.e., pages 23–31), Berner et al. (2022) overview the
questions that are left open by classical statistical learning theory when
applied to neural networks. In particular, this includes:

• The generalization puzzle (as Berner et al. (2022, p. 25) call it): Neural
networks are typically over-parametrized, i.e., have more parameters
than training samples. This means that they can typically interpolate
(or overfit) the training data, i.e., fit exactly to the training data (hence
have zero empirical risk). Hence classical bounds on the generaliza-
tion error are vacuous, and indeed the bias-complexity tradeoff of
classical statistical learning theory would predict neural networks to
perform poorly. Nonetheless, they perform well. Explaining this is
the generalization puzzle.
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• The wonders of optimization (as Belkin (2021, sec. 4) calls it): Stochastic
gradient descent, as it is performed by neural networks, typically
converges to good local minima, despite typically being non-convex.
Hence the classical convergence guarantees from optimization theory
cannot be given. Why is it that neural networks still successfully
optimize?

Belkin (2021, sec. 3.7) extends the classical picture of the U-shape trade-
off between bias (i.e., small hypothesis class) and complexity (i.e., com-
plex/interpolating hypothesis class). Belkin extends this ‘classical regime’
further to the ‘modern regime’ with an even more complex hypothesis
class that is over-parametrized. The result is the double decent generalization
curve (for the figure, see the top of page 3 here): Not only can we descent
from the interpolation threshold (where we have a hypothesis class that
can just overfit/interpolate the training data) into the classical regime by
reducing the complexity of the hypothesis class. We can also descent into
the modern regime by making the hypothesis class even more complex.

Belkin (2021, sec. 3.6) provides a heuristic for why this works: In
this modern, interpolating regime, there are many prediction rules of
the learner which interpolate the training data. Among those, the over-
parametrized neural network learner tends to pick the smoothest one. (A
smooth function is one with, intuitively speaking, no sharp edges.) Being
smooth is a sense of being simple, so we can understand this inductive
bias of the neural network as an instance of Occam’s razor: among the
explanation that are consistent with the evidence (i.e., the prediction rules
with zero empirical risk) pick the simplest one (i.e., the smoothest one).

Further material

• Rest of the papers.
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6 Computability theory of machine learning

Readings

• Colbrook et al. (2022)

Key concepts

• Inverse problems

• Smale’s 18th problem: the limits of AI

• Stability vs accuracy tradeoff

• Adversarial attacks

With the universal approximation theorems, we know that neural net-
works can approximate any (measurable) function arbitrarily well. But
knowing that a neural network must exist that approximates a given func-
tion is one thing. Another thing is to actually find this network. An analogous difference is

described by intuitionistic
logic: between
truth/existence and
provability/construction.

The paper
by Colbrook et al. (2022) shows that these two things really can come apart:
that although there must an approximating network, it is impossible for
us to find it.

Concretely, they consider neural networks aiming to solve inverse prob-
lem. Some reality x determines, via a linear map A and some random noise
e, the sensor readings y = Ax + e. The task is to reconstruct, given the
sensor readings y, what the most minimal reality x must have been giving
rise to these sensor readings.

Their result (theorem 1 and 2 combined) then states: There are map-
pings that map training data of an inverse problem to a neural network
solving it, but no training algorithm (like, e.g., stochastic gradient descent)
can compute such a mapping (producing neural nets with reasonable
accuracy).

The broader context is the question: Why do neural networks tend to be
unstable (adversarial attacks, hallucinations, etc.), even in situations—like
inverse problems—where stable and accurate neural nets exist (since the
universal approximation theorem guarantees that some neural network
can approximate the stable solution)?
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This suggest developing for neural networks an analogous theory like
computability and complexity theory for symbolic computation.

Further material

• Related papers to the above: Bastounis et al. (2022), Boche et al.
(2022)

• On decidability of learnability: Caro (2023)

• An older overview of computability theory of neural networks:
Šíma and Orponen (2003).

• On formal language theory and neural networks: Delétang et al.
(2023), Strobl et al. (2024)
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7 Using statistical mechanics

Readings

• Roberts and Yaida (2022)

• Bahri et al. (2020)

Key concepts

• Analogy between statistical mechanics in physics and neural
networks in machine learning

Further material

• The book by Roberts and Yaida (2022) has been presented in a
course (https://deeplearningtheory.com/lectures/).
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8 Topological data analysis

Readings

• Naitzat et al. (2020)

• Overview: Hensel et al. (2021)

Key concepts

• TBA

Further material

• For a short explanation of persistent homology, see here.

• For a popular science application to neuroscience, see here.
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9 Geometric deep learning

Readings

• Bronstein et al. (2021)

Key concepts

• Applying the Erlangen Program to Machine Learning

Further material

• A website of the project is found here.
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10 Category theory as a language of machine

learning

Readings

• A categorical framework to describe how Large Language Mod-
els move from next-word-probability distributions to syntax
and semantics of language: Bradley et al. (2021)

• Overview interactions of category theory and machine learning:
Shiebler et al. (2021)

Key concepts

• TBA

Further material

• The paper by Bradley et al. (2021) is also covered on the first
author’s great blog here.

• More on categories for AI in this course (https://cats.for.
ai/) and this list of papers on the topic (https://github.com/
bgavran/Category_Theory_Machine_Learning).

• A(nother) language for design patterns of AI architectures: van
Bekkum et al. (2021).
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11 Dynamical systems

Readings

• Overview: Bournez and Pouly (2021)

Key concepts

• Dynamical system

• Monoid action, differential equation

• Classification of models of computation into space-discrete vs
space-continuous and time-discrete vs time-continuous.

• Characterization of expressive power of different neural net-
work architectures in terms of symbolic models of computation

• General purpose analog computer, equivalence with computable
analysis

The key take-away from this chapter is that basically all forms of com-
putation, be it symbolic or not, can be regarded as dynamical systems. A
dynamical system consists out of a state space (consisting of the states that
the system can be in) and a dynamics (describing how the system evolves
over time from the current state to the next states). And, indeed, any
computing machine is, at any given time, in some state, and to compute, it
updates its state step-by-step according to some procedure or algorithm.

Thus, dynamical systems theory provides a rich and all-encompassing
framework to talk about different models of computation. The paper
provides an overview of how this perspective furthers our understanding
of specific models of computation, focusing on the analog ones (including
neural networks) rather than the digital ones (like Turing machines).

Further material

• Further reading: Saxe et al. (2014) and E et al. (2022).

• Popular science videos on analog computation: here and here
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12 Verification of neural networks

Readings

• Albarghouthi (2021)

Key concepts

• TBA

Further material

• TBA
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13 Post-hoc explainability

Readings

• Bilodeau et al. (2024)

Key concepts

• TBA

Further material

• TBA
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